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2010 M-OSRP Annual Report Introduction and Summary

This Annual Report describes the progress, status, and plans of the Mission-Oriented Seismic Re-
search Program for the Fall 2010-Spring 2011 academic year. The Introduction provides a perspec-
tive and program overview that includes: (1) code release to sponsors and (2) technical highlights
from the projects within the program, which are detailed in individual reports within the Report.

This year was another good, productive year for M-OSRP with signi�cant contributions and progress
to report. Among contributions/advances are :

1. Preprocessing: delivery of proprietary M-OSRP software for 3D wave theoretic preprocessing
for source and receiver deghosting;

2. On-shore internal multiples: the historic �rst onshore tests, analysis, and evaluation of ISS
internal multiple e�ectiveness, both in absolute terms and in comparison with other methods,
continued and was reported;

3. On-shore near-surface complexity: good progress to report on testing and evaluating the sensi-
tivity of the ISS internal multiple attenuation algorithm to ill-de�ned near-surface complexity;

4. First �eld data tests, ISS direct depth imaging: progress on the theory and practical fronts
on the inverse scattering series imaging methods continued, and the ISS imaging algorithm
had its �rst �eld data test, with early encouraging results. The entire M-OSRP group was
involved in this �rst ISS �rst �eld data imaging test;

5. Including exclusively laterally varying subsurface imaging challenges in the depth imaging: an
extension of the previous inverse scattering depth imaging method was extended to accommo-
date imaging challenges that only arise with a laterally variable earth, and have no function
in a laterally invariant earth. Encouraging results on synthetic data showed added-value in
comparison with previous ISS imaging capability;

6. Consequences of the di�erence between the appropriate model of a seismic data set and a
model type match-mismatch in processing: this project addressed the issue of how far below
the water bottom can a two-parameter ISS acoustic model provide value in an elastic earth;

7. New projects/New students: projects were launched that began to examine: (a) the inclusion
of a source signature radiation pattern in ISS methods, beginning with free-surface multiple
removal; (b) the inadvertent e�ect of the concept of 'event' on various wave theory processing
methods, including ISS algorithms; (c) bringing the removal of density-only re�ections to a
laterally variable earth, to allow ISS depth imaging; (d) ocean bottom seismics for soft sea
�oor acquisition and processing, and when can P data alone be useful and adequate; (e) why
internal multiples do not contribute to ISS direct depth imaging; and (f) onshore acquisition
and vertical component measurements, acoustic versus elastic Green's theorem for land wavelet
estimation.

1



Introduction M-OSRP10

The details of these projects and initiatives are provided in the individual reports (please refer to
the Annual Report Table of Contents) and also within presentations at the Annual Meeting. A
video of the Annual Meeting and the presentation slides will be on the sponsor-only section of the
M-OSRP website.

The Annual Report will be distributed to sponsor attendees at the Annual Meeting in the form
of a USB pen drive, and will be sent to sponsors unable to attend, and will also be available on
the sponsor-only section of the M-OSRP web-site. The papers and authors that contributed to the
above projects, and initiatives, can be readily located from the Table of Contents of the Annual
Report.

Publications/Books/Abstracts submitted this past year:

Two invited papers for an upcoming special edition of SEG's The Leading Edge on multiple sup-
pression: (1) "Elimination of land internal multiples based on Inverse Scattering Series" by Yi Luo,
Panos G. Kelamis, Qiang Fu, ShouDong Huo, Ghada Sindi, Shih-Ying Hsu, and Arthur B. Weglein;
and (2) "Multiple attenuation: Recent advances and the road ahead (2011)" by Arthur B. Weglein,
Shih-Ying Hsu, Paolo Terenghi, Xu Li and Robert H. Stolt.

A new and for the �rst time consistent Green's theorem method for reverse-time migration (RTM)
that addresses shortcomings in the theory and application of current RTM methods. Those papers
provide a Green's function that simultaneous allows two-way propagation and has no contribution
from the lower boundary. The latter property avoids issues and imaging artifacts from, for example,
absorbing boundary conditions or perfectly matched layer (PML), A.B. Weglein, R.H. Stolt and
J.D. Mayhan, "Reverse-time migration and Green's theorem: Part I - The evolution of concepts, and
setting the stage for the new RTMmethod", Journal of Seismic Exploration 20: 73-90; A.B. Weglein,
R.H. Stolt and J.D. Mayhan, "Reverse-time migration and Green's theorem: Part II - A new and
consisten theory that progresses and corrects current RTM concepts and methods", Journal of
Seismic Exploration 20: 135-159.

The �rst of a two-volume set on "Seismic Imaging and Inversion" by R. H. Stolt and A. B. Weglein
is soon to appear, published by Cambridge University Press.

Three SEG Abstracts were submitted in 2011: (1) "Green's theorem derived methods for prepro-
cessing seismic data when the presure P and its normal derivative are measured" by J. D. Mayhan,
P. Terenghi, A. B. Weglein, and Nizar Chemingui; (2) "The inverse scattering series approach to
removing internal multiples: Delineating and de�ning its current stand-alone capability, and propos-
ing a plan for additional added value for land application" by A. B. Weglein, P. Terenghi, S.-Y. Hsu,
Y. Luo, and P.G. Kelamis; and (3) "Inverse scattering depth imaging: First �eld data examples" by
Fang Liu, X. Li, A. B. Weglein, P. Terenghi, Ed Kragh, Hong Liang, James D. Mayhan, Lin Tang,
S.-Y. Hsu, Zhiqiang Wang, Joachim Mispel, and Lasse Amundsen.

Welcome

Please join me in extending a very warm welcome to Repsol and Total as new sponsors of M-OSRP,
and Gladys Gonzalez, Francisco Ortigosa, and Wa�k Beydoun as the newest members of the M-
OSRP Advisory Board. We are also happy to announce that Dr. Wilberth Herrera (from Steven
Weinberg's group at UT Austin) and Dr. Lujian Peng (from the Department of Material Science
and Engineering, University of Tennessee), have joined our research group as research scientists.
We very much look forward to working together with Lujian and Wilberth.
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Summary

It has been a very good and productive year. Among the highlights mentioned above is the �rst
�eld data test of inverse scattering series imaging, that demonstrated the method's viability. In
addition to reviewing the progress of the past year, at the Annual Meeting, June 1-3, 2011, at the
Barton Creek Hotel in Austin, Texas, we will also describe our strategy to move from demonstrating
viability to providing relevant added-value within the seismic imaging tool-box. The development,
testing and delivery of new capability in response to pressing seismic exploration challenges has
had another good year and the campaign continues. On behalf of the students, sta� and faculty of
M-OSRP, I want to thank you for your encouragement and your constant and strong support.

Sincere best regards, Art

Arthur B. Weglein
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Green's theorem derived method for deghosting seismic data when the
pressure P and its normal derivative are measured along the cable

James D. Mayhan, Paolo Terenghi, Arthur B. Weglein, and Nizar Chemingui

Abstract

We discuss deghosting of marine seismic data using Green's theorem. Deghosting is put into
context in the complete M-OSRP processing chain, Green's theorem derived theory is presented,
and an algorithm implementing the theory is discussed. The algorithm has been tested on �eld
data and several kinds of synthetic data with positive and encouraging results. This algorithm
is the �rst of a set of deliverables based on Green's theorem in 3D. Release 1 (deghosting) has
been delivered to the sponsors (via the sponsors only section at mosrp.uh.edu).

1 Introduction

Green's theorem o�ers a �exible framework for de�ning a number of useful algorithms � ghost
removal, wave�eld separation (into reference P0 and scattered Ps), wavelet estimation, and two way
wave�eld continuation (RTM) � because it allows the freedom of choosing a convenient reference
medium (Weglein and Secrest (1990), Zhang and Weglein (2005), Zhang and Weglein (2006), Zhang
(2007), Ramírez and Weglein (2009)). Green's theorem methods are exact (fully consistent with
the wave equation), multidimensional, make no assumptions about the earth, and work in the (ω, r)
data space (and hence are simple to extend to irregularly spaced data). Therefore, Green's theorem
preprocessing methods and inverse scattering series (ISS) isolated task subseries are fully consistent.

Deghosting is important because (1) it is a prerequisite for many processing algorithms including
data driven multiple elimination (ISS free surface multiples and internal multiples and conventional
surface related multiple elimination (SRME)) and imaging (wave�eld continuation often assumes
one way waves), and (2) removing the downward component of the �eld enhances seismic resolution
and boosts the low frequencies. Hence, deghosting has bene�t for traditional seismic processing and
also provides an important role in all ISS based isolated task processing. This report is focused on
deghosting.

Deghosting is a prerequisite for the ISS. The ISS can perform certain tasks (e.g., free surface
multiple elimination) without a priori estimates of the spatial distribution of velocity. The Mission-
Oriented Seismic Research Program (M-OSRP) has generated algorithms to accomplish seismic
data processing goals based on the ISS (free surface multiple elimination, internal multiple removal,
depth imaging, nonlinear direct amplitude variation with o�set (AVO), and Q compensation) and
Green's theorem (deghosting, source signature estimation, and data reconstruction). While the ISS
is independent of subsurface velocity (and in fact of all subsurface properties), it is data dependent
and makes certain assumptions about its input data. Weglein et al. (2003) describe how every ISS
isolated task subseries requires (1) the removal of the reference wave�eld, (2) an estimate of the
source signature and radiation pattern, and (3) source and receiver deghosting and how the ISS
has a nonlinear cascaded dependence on these preprocessing steps. Therefore, the Green's theorem
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deghosting methods are critically important to the success of the inverse series methods since they
may be used to bring seismic data in line with the assumptions of inverse scattering. The fact that
the ISS is nonlinear places a higher bar on preprocessing. An error in the input to a linear process
creates a linear error in its output, but the same error in ISS input creates linear, quadratic, cubic,
and higher order errors in its output.

1.1 Terminology

A brief aside on terminology. (1) The total wave�eld P consists of the reference wave�eld P0 (which
doesn't experience the earth) and the scattered wave�eld Ps (which does experience the earth).
(2) Ghosts begin their propagation moving upward from the source (source ghosts) or end their
propagation moving downward to the receiver (receiver ghosts) or both (source/receiver ghosts)
and have at least one upward re�ection from the earth. (3) Free surface multiples have at least one
downward re�ection from the free surface (air-water interface) and at least one upward re�ection
from the earth. (4) Internal multiples have no downward re�ections from the free surface, more than
one upward re�ection from the earth, and at least one downward re�ection from inside the earth.
An nth order internal multiple has n downward re�ections from inside the earth. (5) Primaries have
only one upward re�ection from the earth.

2 Deghosting tutorial

The ISS is based on perturbation theory, and Green's theorem derived preprocessing utilizes per-
turbation theory. A reference medium (and its associated Green's function) is chosen to facilitate
solving the problem at hand, and the perturbation is the real world properties minus the reference
medium. Within that framework, Green's theorem based preprocessing is remarkably wide ranging.
For example, Figure 1 shows the con�guration chosen for Green's theorem deghosting. Choos-
ing a reference medium consisting of a whole space of water, a hemispherical surface of integration
bounded below by the measurement surface, and the prediction/observation point inside the surface
of integration gives deghosted data P deghosted. A di�erent choice of a reference medium (a half space
of air and a half space of water) and the prediction/observation point outside/inside the surface of
integration gives wave�eld separation in which the total wave�eld P is separated into the reference
wave�eld P0 and scattered wave�eld Ps. It should be noted that several processing algorithms for
multiple elimination (including the ISS) assume deghosting has been performed on the data and
that an accurate estimate of the source wavelet is available. (The latter can be computed using P0.)

Deghosting (both receiver and source side) is based on Zhang and Weglein (2005), Zhang and
Weglein (2006), and Zhang (2007). The theory assumes measurement of the pressure wave�eld P
and its normal derivative ∂P/∂n ≡ ∇′P (r′, rs, ω) · n̂ where r′ is the measurement point, rs is the
source location, and n̂ is the normal to the measurement surface. The reference medium is chosen
as a whole space of water (where a causal, analytic solution exists for the acoustic wave equation).
In 3D the whole space Green's function is

Gd0(r, r′, ω) = − 1
4π

exp (ikR+)
R+
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Figure 1: Con�guration for deghosting using Green's theorem (Zhang, 2007). αair and αearth are per-
turbations, the di�erences between the actual medium (air, water, earth) and reference medium
(water). The closed surface S of integration is the measurement surface plus dashed line.

where k = ω/c0, c0 is the wave speed in the reference medium, and R+ = |r− r
′|. In 2D

Gd0(r, r′, ω) = − i
4
H

(1)
0 (kR+)

where H
(1)
0 is the zeroth order Hankel function of the �rst kind (Morse and Feshbach, 1953, pp. 810-

811). The observation/prediction point is between the free surface and the measurement surface,
i.e., inside the volume V bounded by the closed surface of integration consisting of the measurement
surface and dashed line in Figure 1.

Using the above con�guration and Green's theorem gives the key equation (Zhang, 2007, equa-
tion 2.23),

P deghosted(r, rs, ω) =
∮
S
dS n̂ · [P (r′, rs, ω)∇′Gd0(r, r′, ω)−Gd0(r, r′, ω)∇′P (r′, rs, ω)], (1)

where r is the prediction point, rs is the location of the air gun array, S is the closed surface consisting
of the measurement surface and dashed line in Figure 1, n̂ is the normal to S (pointing away from
the enclosed volume V), r′ is the measurement point, and Gd0 is a whole space Green's function.
Extending the radius of the hemisphere to in�nity, invoking the Sommerfeld radiation condition,
and assuming a horizontal measurement surface, the integral over the closed surface becomes an
integral over the measurement surface (Zhang, 2007, equation 2.24),

P deghosted(r, rs, ω) =
∫
m.s.

dS [P (r′, rs, ω)
∂

∂z′
Gd0(r, r′, ω)−Gd0(r, r′, ω)

∂

∂z′
P (r′, rs, ω)]. (2)

The algorithm as given in equation 2 lends itself to application in a marine single shot experiment.
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3 The code

The implementation of the above theory is done in a straightforward manner. The Green's theorem
algorithm computes the surface integral in equation 2. The method requires two wave�elds as input,
the pressure measurements P and their normal derivatives ∂P/∂z′. The latter require dual sensor
cables or dual streamer cables. Source side deghosting is straightforward and amounts to applying
reciprocity to exchange sources and receivers. Our examples will focus on receiver side deghosting.

This code is the �rst of a set of deliverables based on Green's theorem in 3D. The new programs
use data in the Seismic Unix (SU) format and integrate with all native SU programs. Release 1
consists of the following components: (1) Code (sujim.c) which calculates the surface integral in
equation 2 (deghosting), reduced to the contribution from the measurement surface as explained
previously. (2) Code (sugreen.c) which computes the Green's function for a homogeneous half space
or whole space, and optionally convolves with a Ricker wavelet. The output is in the t, x domain,
while calculations are performed in the ω, x domain. (3) Synthetic data created from the �at layer
model and used to create Figure 2. (4) Files required to compile sujim.c and sugreen.c, a script that
can be used to submit the two programs, and code documentation are also included. The above
items are in directory Jim_Greens.tar in the sponsors only section of mosrp.uh.edu.

The same code can also perform source wavelet estimation, the documentation for which will be
included in Release 2 to the sponsors. A discussion of source wavelet estimation is in the appendix.

3.1 Example: Flat layer model

The left panel of Figure 2 shows synthetic data (produced using ray tracing in a �at layer model)
designed so that deghosting is easy to demonstrate. (More detail about the input data is in the
Appendix.) The depth of the receivers is chosen such that primaries and ghosts appear as distinct
seismic events. The right panel of Figure 2 shows Green's theorem output using equation 2; note the
primary's receiver side ghost at 0.45 s and the free surface multiple's receiver side ghost at 0.85 s are
suppressed. Figure 3 shows the spectra of the input data (blue) and receiver side deghosted output
(red). As expected, the receiver side deghosted data �lls in notches related to receiver ghosts.

3.2 Example: SEAM application

Green's theorem was applied to the SEAM data set generated based on a deepwater Gulf of Mexico
earth model (Figure 4) (Society of Exploration Geophysicists, 2011). We used the special SEAM
classic data set modeled to simulate dual sensor acquisition by recording the pressure wave�eld
at two di�erent depths, 15 m and 17 m respectively. This dual sensor data consisted of nine sail
lines for an equivalent wide azimuth towed streamer survey. The source interval is 150 m by 150
m while the receiver interval is 30 m in both inline and crossline directions. Figure 5 displays a
typical shot gather from the SEAM model. Given the low frequency of the data (less than 30 Hz)
and the source and receiver depths of 15 m and 17 m, the ghost re�ections are not as separable
as in the previous �at layer model. In this situation, successful deghosting would correspond to a
change in the wavelet shape. Figure 6 shows SEAM input (a window of Figure 5) and receiver side
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Figure 2: Flat layer model (source at 30 m, cable at 140 m, water bottom at 300 m): input data at 110 m
(left), receiver side deghosted at 100 m (right).

deghosted output computed by the Green's theorem approach. In the right panel of Figure 6, note
the collapsed wavelet. In Figure 7, note the increased amplitude in lower frequencies and decreased
amplitude in higher frequencies, i.e., the shift of the amplitude spectrum towards low frequencies.

3.3 Example: Field data

We also applied the deghosting approach to a �eld survey from the deep water Gulf of Mexico. The
data were acquired using dual sensor streamers comprised of hydrophones and vertical geophones.
The left panel in Figure 8 shows a close up of an input shot record while the right panel displays the
same traces after receiver side deghosting. Note the collapsed wavelet in the output image. This
is also demonstrated in Figure 9 that shows the amplitude spectra before and after receiver side
deghosting. The receiver depth is about 25 m which corresponds to notches in the input spectra
around 30 Hz, 60 Hz, and 90 Hz. Figure 9 displays the spectra of the hydrophones before and after
receiver side deghosting. In the bandwidth from 20 Hz to 100 Hz, note the removal of the receiver
notches by receiver side deghosting.

4 Conclusions

We have implemented deghosting based on Green's theorem and have tested the algorithm on �eld
data and several kinds of synthetic data. Testing to date has shown the algorithm works with
positive and encouraging results.

Suggestions for improving the code are appreciated. (The �rst author can be reached via e-mail at
jdmhou1@sbcglobal.net.)
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Figure 3: Flat layer model: muted input data (blue), receiver side deghosted (red). The receiver notches (at
intervals of 5.4 Hz) have been �lled in; the notch at 25 Hz is a source notch.
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A Source wavelet estimation

Source wavelet estimation is based on Weglein and Secrest (1990) which uses the geometry shown
in Figure 10. The reference medium is chosen to be a half space of water plus a half space of air
separated by a free surface, and the observation/prediction point r is below the towed cable, i.e.,
outside the integration volume V.

The key equation is:

P0(r, rs, ω) =
∫
m.s.

dS n̂ · [P (r′, rs, ω)∇′GD0 (r, r′, ω)−GD0 (r, r′, ω)∇′P (r′, rs, ω)], (3)

where GD0 is a Dirichlet Green's function constructed to vanish on the free surface. In 3D

GD0 (r, r′, ω) = − 1
4π

(
exp (ikR+)

R+
− exp (ikR−)

R−

)
,

in 2D

GD0 (r, r′, ω) = − i
4

(H(1)
0 (kR+)−H(1)

0 (kR−)),

and R± =
√

(x− x′)2 + (y − y′)2 + (z ∓ z′)2.
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Figure 4: SEAM deepwater Gulf of Mexico model: inline section from the middle of the model. Figure
courtesy of SEAM.

The source wavelet A(ω) can be estimated by averaging the reference wave�eld divided by a Green's
function:

A(ω) =
1
N

N∑
i=1

P0(ri, rs, ω)
G+

0 (ri, rs, ω)
.

It is worth noting that inside/outside the integration volume is an important concept. The surface
of integration S divides all space into inside and outside the integration volume V. The integral over
S of (P∇′GD0 − GD0 ∇′P ) · n̂ gives the �eld inside (outside) the integration volume due to sources
outside (inside) the integration volume, a result called the extinction theorem (Born and Wolf, 1964,
pp. 101�102). Selecting the integration volume V between the free surface and measurement surface
(Figure 10) gives the reference wave�eld P0 (if the observation/prediction point is outside V/below
the cable) or the scattered wave�eld Ps (if the observation point is inside V/above the cable). An
electromagnetic analogy is shown in Figure 11. Sources outside (inside) the integration volume
induce sources on the measurement surface that create the �eld inside (outside) the integration
volume (Orfanidis, 2008, pp. 679-681), (Jackson, 1999, pp. 36-37).

B Input data characteristics

The �at layer model has the following parameters:
Free surface, 3D source, water bottom at 300 m, 1D constant density acoustic earth (c = 2250 m/s)
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Figure 5: SEAM data, shot 130305 (located at sx=16,975 m, sy=20,000 m, sz=15 m, i.e., near the center
of the shot grid).

Depth of source: 30 m
Frequency of source at peak amplitude: 20 Hz
1 towed streamer, 801 receivers
Distance between receivers: 6.25 m
Depth of towed streamer: 140 m
Sampling rate: 4 ms
Record length: 1500 samples

dP

dz′
=
P (140m)− P (145m)

140m− 145m

The SEAM model has the following parameters:
Free surface, 3D source, variable water depth, 3D variable density acoustic earth
Depth of source: 15 m
Frequency of source: 1-30 Hz
661 × 661 receivers
Distance between towed streamers: 30 m
Distance between receivers: 30 m
Depth of receivers: 15 m and 17 m
Sampling rate: 8 ms
Record length: 16 s (2001 samples)

dP

dz′
=
P (17m)− P (15m)

17m− 15m

The �eld data has the following parameters:
Free surface, 3D source, variable water depth, actual earth
Depth of source: 9 m
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Figure 6: SEAM data, shot 130305: recorded data at 17 m (left), receiver side deghosted at free surface
(right). Note the collapsed wavelet in the right panel.

Figure 7: SEAM data: shot 130305: recorded data at 17 m (blue), receiver side deghosted at free surface
(red). Note the shift of the spectrum towards lower frequencies (�rst receiver notch is at 50 Hz).

1 towed streamer, 960 receivers
Distance between receivers (after grouping): 12.5 m
Depth of towed streamer: 22�25 m
Sampling rate: 4 ms
Record length: 3585 samples
2 input �les: P and Vz

dP

dz′
= iωρVz
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Figure 8: Field data: hydrophones (top), receiver side deghosted at free surface (bottom). Note the collapsed
wavelet in the right panel. Input data courtesy of PGS.
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Figure 9: Input hydrophones (blue), receiver side deghosted (red). The receiver notches around 30 Hz, 60
Hz, and 90 Hz have been �lled in. Input data courtesy of PGS.

where ρ is the density of the reference medium (seawater).

13



Deghosting M-OSRP10

Figure 10: Con�guration for estimating the source wavelet A(ω) (Zhang, 2007). The closed surface S of
integration consists of the measurement surface, free surface, and dashed lines.
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Figure 11: Gauss' law (Jackson, 1999). The normal component of the electric �eld E · n̂ is integrated over
the closed surface S. If the charge is inside (outside) S, the total solid angle subtended at the
charge is 4π (zero).
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The properties of the inverse scattering series internal multiple
attenuation algorithm: Analysis and evaluation on synthetic data
with lateral variations, choosing reference velocity and examining
its sensitivity to near surface properties

Shih-Ying Hsu, Paolo Terenghi and Arthur B. Weglein

Abstract

We present three examples to demonstrate the capability of the inverse scattering series in-
ternal multiple attenuation algorithm. Example 1 shows that the algorithm resolves complicated
wave phenomena by transforming the input wave�eld into pseudodepth domain. The key to this
algorithm's automated scheme is to allow all combinations of events that satisfy lower-higher-
lower relationship in pseudodepth domain to contribute to internal multiple prediction. The
algorithm's strength of handling all internal multiples for all horizons at the same time without
any interpretive intervention is shown in example 2. In example 3, the algorithm's insensitivity
to reference velocity error is demonstrated by the numerical results using both accurate and
inaccurate reference velocity.

1 Introduction

Multiple removal is a long-standing problem in seismic processing. When exploring o�shore areas,
the most dominant multiples are associated with re�ections at the free surface; thus, performing
free surface de-multiple is often su�cient. As there is an increasing demand for energy it becomes
necessary to explore more challenging areas (e.g. deep water/complex marine environments and on-
shore areas) where internal multiples often predominate. The inability to attenuate/remove internal
multiples can cause destructive interference with primaries or multiples can be misinterpreted as pri-
maries leading to poor drilling decisions. Hence, an adequate internal multiple attenuation/removal
method in complex geology is required.

Methods for internal multiple attenuation/removal can be divided into two group. The �rst group
of methods requires the user to identify the primaries as internal multiple sub-events or the portion
of the earth responsible for the internal multiple's downward re�ection. Typically, the interpre-
tation consists in the picking of the travel-time of the event corresponding to a chosen re�ector,
often referred to as the internal multiple generator. In one case, the interpretation can be used
directly to isolate the chosen generator from other events corresponding to deeper re�ectors (Key-
dar et al., 1997; Jakubowicz, 1998). Another group of algorithms use the picked travel-times to
downward continue the wave-�eld towards the generator (Berkhout and Verschuur, 2005; Verschuur
and Berkhout, 2005) [common-focus-point or CFP boundary approach] or towards a chosen refer-
ence level (Berkhout and Verschuur, 2005; Verschuur and Berkhout, 2005) [CFP layer approach].
The reference level is chosen to separate the regions of the earth that act as downward re�ectors
from those that act as upward re�ectors in the prediction of internal multiples. The layer approach
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predicts internal multiples composed of a downward re�ection above the chosen level and upward
re�ections below the level. It will not predict the internal multiple with at least one of its upward
re�ections above the chosen reference level.

The second group of internal multiple attenuation/removal methods does not require generator
identi�cation and the internal multiples are constructed by combining three events that satisfy an
automated constraint. In the method based on the inverse scattering series (ISS), the constraint is a
lower-higher-lower relationship in pseudo-depth or vertical travel time (Araújo et al., 1994; Weglein
et al., 1997, 2003; Nita and Weglein, 2007). ten Kroode (2002) proposed an asymptotic derivation
of the results in Weglein et al. (1997), where the constraint is a longer-shorter-longer relationship
between total travel-times under the assumption of travel-time monotonicity (deeper events yield
longer travel time). The automated constraint enables the algorithms in the second group to predict
internal multiples for all possible generators in one step and can be considered truly independent
of subsurface information. It should be mentioned that the latter method will not predict internal
multiples generated within the area that does not satisfy travel-time monotonicity.

The leading order ISS internal multiple attenuation algorithm was �rst proposed by Araújo et al.
(1994) and Weglein et al. (1997). This multi-D algorithm does not require subsurface information
or interpretive intervention. It predicts internal multiples for all horizons at once. This algorithm
is independent of earth model type and it predicts the correct traveltimes and an approximated
amplitude of the true internal multiples in the data, including converted wave internal multiples
(Coates and Weglein, 1996). Ramírez and Weglein (2005) captured a portion of the higher order
terms in a closed form, thus improving the amplitude of the prediction. Matson (1997) extended
the theory to the case of land and ocean-bottom surveying (Matson and Weglein, 1996). Other
implementations were proposed in Otnes et al. (2004), Kaplan et al. (2005) and Hsu et al. (2010).
The �rst towed-streamer �eld data example using the 2D version of the algorithm was shown by
Matson et al. (1999) and the �rst land �eld data example appeared in Fu et al. (2010). The
encouraging results demonstrate the e�ectiveness of this algorithm and the latter paper represents
an important step in demonstrating the ISS algorithm in cases where the choice of the reference
medium is problematic, due to near surface heterogeneity.

In this paper, we brie�y review the ISS internal multiple attenuation algorithm followed by numerical
examples. The �rst example demonstrates the advantage of using vertical travel-time instead of
total travel-time as the automated constraint for the case of multiples generating at a highly curved
boundary. In the second numerical example we illustrate the properties of the ISS internal multiple
attenuation algorithm and the di�erence between ISS method and the CFP layer approach. In
particular, we highlight how the ISS method can predict all internal multiples generated by all
re�ectors in a single step. In the third example we demonstrate this algorithm to be robust even
with incorrect reference velocity, which accommodates the error due to near surface complexity.

2 Theory

The ISS provide a family of data-processing algorithms �rmly rooted into the wave equation and all
based on the intuitive idea that the earth properties can be divided into a known (typically homoge-
neous) background component, where the propagation of waves can be described analytically, and
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an unknown perturbation, which is the object to the investigation. The wave-equation allows the
sought for perturbation to be determined as a series of terms of increasing power in the input scat-
tered �eld. Within this framework, the removal of internal multiples can be regarded as a particular
task within the general inversion scheme and it is possible to identify a sub-series to construct the
internal multiple-free data starting from the input wave-�eld with all internal multiples.

The internal multiple attenuation series starts with an uncollapsed FK migration of the wave-�eld
with all its internal multiples untouched. After the �rst order term is determined, all higher order
terms can also be determined in a cascade. The leading order contribution to the prediction of
the internal multiples can be found within the third order term, which combines three instances
of the �rst-order FK migration, constrained by a lower-higher-lower relationship. All subsequent
terms reside in the odd-numbered terms in the series, similarly constrained by the lower-higher-lower
relationship.

The ISS internal multiple attenuation algorithm for �rst order internal multiple prediction in a 2D
earth is given by Araújo (1994) and Weglein et al. (1997),

b3(kg, ks, ω) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

dk1e
−iq1(zg−zs)dk2e

iq2(zg−zs)

×
∫ ∞
−∞

dz1b1(kg, k1, z1)ei(qg+q1)z1

×
∫ z1−ε

−∞
dz2b1(k1, k2, z2)e−i(q1+q2)z2

×
∫ ∞
z2+ε

dz3b1(k2, ks, z3)ei(q2+qs)z3 , (1)

where ω is temporal frequency; kg and ks are the horizontal wavenumbers for source and receiver
coordinates, respectively; the vertical source and receiver wavenumbers, qg and qs, are given by

qi = sgn(ω)
√

ω2

c20
− k2

i for i = (g, s); c0 is the constant background velocity; zs and zg are source and

receiver depths; and zi (i = 1, 2, 3) represents pseudodepth (depth location given by migration with
background velocity). The quantity b1(kg, ks, z) corresponds to an uncollapsed migration (Weglein
et al., 1997) of an e�ective plane-wave incident data, b1(kg, ks, qg + qs) = −2iqsD(kg, ks, ω), where
D(kg, ks, ω) is the Fourier transformed prestack data.

3 Properties of the �rst order term - uncollapsed FK migration

The �rst order term in the ISS internal multiple attenuation series can be regarded as an uncollapsed
Stolt migration of the input wave-�eld with all its internal multiples. It is worth reminding that
Stolt migration provides an exact one-way wave-equation method for a constant-velocity acoustic
medium. Therefore, where the chosen constant velocity adequately describes the properties of the
actual medium all re�ections and di�ractions are collapsed to their exact image location. However,
where the constant velocity is inadequate, waves will still focus, albeit at a smeared-out area near
the correct image location. In general, the pseudo-depth of a geologic feature determined through
FK migration in the constant velocity background medium does not necessarily match the true
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location of that feature in the actual earth. Unlike the original pre-stack Stolt migration, however,
the �rst order term in the ISS internal multiple series does not perform the �nal stack over all
re�ection angles which �nalizes all traditional imaging processes. Rather it preserves the pre-stack
information that allows an exact de-migration to be performed within the third and higher order
terms even in the case of inadequate velocity.

Stolt uncollapsed migration resolves many complicated wave phenomena within a constant velocity
overburden such as di�ractions and multi-pathing. One example of such phenomena is the bow-tie
pattern generated by re�ections over a su�ciently curved boundary. These e�ects are common in
seismic exploration data, as they can occur in a variety of known geologic settings, including highly
curved re�ectors (e.g. salt domes), faults, layer terminations, pinch-outs, fractured and/or irregular
volcanic layers and even at the sea bottom in the case of rough topography. Several algorithms
published in the literature for the attenuation of internal multiples require the user to pick the
travel-time of the seismic event interpreted as the internal multiple generator, de�ned as the location
of a downward re�ection generally associated with the de�nition of internal multiples. In some of
those methods the picked travel-times are directly used to mute the wave-�eld at earlier or later
times with respect to the generator and internal multiples are then predicted using auto and cross-
correlation operations between traces from the resulting �elds (Keydar et al., 1997; Jakubowicz,
1998). In other methods traveltimes are used to determine approximated re-datuming operators in
a data-driven manner, capable of 'sinking' the measurement surface down into the earth, where the
prediction of internal multiples is resorted to the known free-surface case (Berkhout and Verschuur,
2005; Verschuur and Berkhout, 2005). However, all these approaches are based on the implicit
assumption that a one-to-one relationship exists between seismic events (their travel-time) and
the earth features that create them (such as layer boundaries). In the presence of di�ractions or
multi-pathing, a one-to-one relationship does not exist, as a single curved interface can produce
several seismic arrivals. In that case picking of traveltimes becomes an issue and those methods are
inadequate wherever the interpretation is required with a certain degree of accuracy.

Example 1: Internal multiples from curved or rugose surfaces

We propose an example based on a simple three-layer earth model where the shallower interface is
sine-shaped. The model in Figure 1(a) produces the data in Figure 1(b) where all seismic events
except the second primary at 2.2s can be traced back to their origin at the shallow re�ector. Clearly,
in this example it is an issue to pick a unique travel-time to represent the curved re�ector, as many
events are generated, which interfere among themselves and even with the second primary. The
ISS method provides an elegant solution to that problem, by allowing an un-collapsed image to
represent the input wave-�eld in the pseudo-depth domain rather than in the total-time domain
(Figure 1(c)). In such representation, the order of events along the vertical axis can be trusted to
agree with the order of re�ectors along the actual depth axis (Nita and Weglein, 2007).

Figure 2 describes the case of an internal multiple which would not be predicted if total travel-
times were taken into considerations. The multiple can be shown to an earth feature where the
relationship between total traveltimes and vertical traveltimes (pseudodepth) is inverted due to the
presence of a high velocity layer at depth.
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Figure 1: (a) Velocity model, (b) zero o�set sections of the input data, (c) input wave�eld in the pseudo-
depth domain.
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Figure 2: An internal multiple (solid blue) satisfying monotonicity in vertical time but not in total travel
time. If wave-speed c1 is much greater than c0, the (dashed blue) and (dashed green) primaries
arrive at the surface earlier than the (dashed red) primary. The multiple is removed by the ISS
method, but not by methods based on total traveltime monotonicity.
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Figure 3: earth model (a) and event labeling (b) used in example2. Densities are chosen to yield a vertical-
incidence re�ection coe�cient of 0.8 at all layer boundaries.

4 Properties of the leading (third) order term

Let z1, z2 and z3 be the pseudodepths of three generic points in the �rst order term of the internal
multiples series (uncollapsed constant-velocity pre-stack migration). As those points span the entire
data volume, the leading order (third order) algorithm allows any combination such that z1 > z2 and
z3 > z2 to contribute the prediction (lower-higher-lower constraint). In contrast with the methods
based on the convolution and correlation of wave-�elds, where the de�nition of the generator is
static, the ISS algorithm's lower-higher-lower constraint does not refer to any particular interface or
event in the data. On the contrary, it applies to all of them and therefore allows the simultaneous
prediction of a variety of internal multiples at once without requiring interpretation and traveltime
picking of the data or knowledge of the medium.

Example 2: A complete one-step prediction

We demonstrate the properties of the ISS internal multiple prediction algorithm using a set of
acoustic �nite-di�erence data. The model (shown in Figure 3(a)) consists of four media delimited
by three interfaces, the �rst of which has a gap approximately 1.5km long and 100m deep. In
Figure 3(b), the travel paths of some internal multiples are drawn schematically using up- and
downgoing arrows representing wave propagation. In a zero o�set section of the data (Figure 4(a))
a �rst train of closely spaced internal multiples (characterized by the pattern 2[12]n) can be shown
to originate from the energy re�ected between the two shallow re�ectors (1) and (2). A deeper
re�ector (3) causes the entire train to begin again at around 1.4s (3[12]n trend) and once more at 2.1s
(313[12]n and 323[12]n trends). In general, even in a simple three-interface earth model, the number
of reverberations recorded at the surface is extremely large as a result of the various ways three
re�ectors can be combined to form internal multiples. The ISS internal multiple algorithm predicts
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all of them at once, without any interpretation required on the data, as shown in Figures 4(b) and
4(c).

It is useful to observe that CFP layer-related approach would not achieve the same result in a single
step. Figure 5(a) shows the four types of �rst-order internal multiples generated within a three-
re�ector earth. If the reference level that separates an internal multiple's upward and downward
re�ections is chosen to close between the �rst and the second re�ectors, the layer-related method
would predict the three types of �rst-order internal multiples shown in Figure 5(b). If we use
the layer-related method and choose the reference level between events (1) and (2) in the example
shown in Figure 4, all multiples characterized by trend 3[23]n would be absent in the prediction.
Figure 5(c) shows a di�erent prediction produced by selecting the reference level to close between
second and third re�ectors. Similarly, in the example in Figure 4, if the downward re�ecting layer
was chosen to close between events (2) and (3), all 2[12]n trend would not be predicted. Notice that
once the reference level is chosen, the events above this level can only act as downward re�ectors;
similarly, the events below this level can only contribute as upward re�ectors. In Figure 5(a),
however, the second re�ector contributes both as an upward re�ector, for the two internal multiples
in the middle, and as a downward re�ector, for the right most internal multiple. Therefore, for any
choice of downward-re�ecting layer, there is at least one trend of �rst-order internal multiple which
cannot be predicted in one step.

In contrast, there is no such kind of restriction in ISS internal multiple attenuation algorithm. Any
combination of three events that satisfy the lower-higher-lower relationship in pseudodepth will
contribute to the prediction. Hence, the re�ections associated to the second re�ector in 5(a) can be
used as upward and downward re�ections in predicting di�erent type of internal multiples within a
single step.

Example 3: Reference velocity insensitivity

The ISS solves the perturbation using only the reference Green's function and measured data. One
reasonable question to ask is what to choose for the reference medium. The ISS needs the reference
medium to agree with the actual medium at and above the measurement surface so the perturbation
may exist only below the source-receiver plane. Hence, the known near surface properties, including
reference velocity, are required. In the marine case, the requirement is easily satis�ed by choosing
water as a reference medium. On the other hand, the requirement may be di�cult to obtain
for onshore application where the near surface complexity often produces unavoidable errors in
reference velocity measurement. However, it is reasonable to expect that the requirement may not
be as stringent for the internal multiple attenuation subseries as it can be for the entire inverse series,
which have the direct determination of the earth properties as a target. Hsu and Weglein (2008)
have shown that the ISS internal multiple attenuation algorithm is independent of the reference
velocity for an 1D earth. Here, we evaluate the algorithm's reference velocity insensitivity using
di�erent reference velocity to perform the prediction on the same acoustic �nite-di�erence data as
example 2.

The zero-o�set section of the predictions obtained using di�erent reference velocity are shown in
Figure 6. The predictions using lower reference velocity 1300 m/s and 1400 m/s are shown in Fig-
ures 6(b) and 6(c). The prediction with correct reference velocity 1500 m/s is shown in Figure 6(d).
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(a) (b) (c)

Figure 4: zero o�set sections from example2: (a) input data, (b) predicted multiples and (c) labeling of
events.

(a) (b) (c)

Figure 5: (a) Four types of �rst-order internal multiples are generated by three re�ectors. (b) and (c) The
�rst-order internal multiples predicted by the feedback layer method using di�erent de�nitions
of the downward generator layer (red dashed lines).
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The results using higher reference velocities, 1600 m/s and 1700 m/s, are displayed in Figure 6(e)
and 6(f). The zero o�set sections of the �ve results are very similar, which con�rms our previous
study of reference velocity insensitivity in 1D. In Figure 7 we compare the single shot gather of the
�ve results. The predictions are also very similar but notice that the amplitudes of the far o�set
in Figures 7(e) and 7(f) are slightly weaker than that in Figure 7(d). We relate this phenomenon
to the fact that our current implementation only uses the nonevanescent portion of the data, cor-

responding to real values of vertical wavenumber q, given by q = sgn(ω)
√

ω2

c20
− k2. For higher

reference velocity, the nonevanescent portion is smaller; therefore, it excludes the computations of
the steepest slopes associated with the far o�sets of the �rst primary. For the same reason, with
high reference velocities, the algorithm also becomes faster to compute.

The ISS internal multiple attenuation algorithm produces similar predictions for di�erent refer-
ence velocities. For onshore cases, the velocity independence of the ISS algorithm is particularly
important as it may accommodate the local heterogeneity of the near surface medium.

5 Conclusions

In this work, we demonstrated through simple numerical examples some of the strengths of the ISS
internal multiple attenuation method. The algorithm (1) works in the pseudodepth domain, where
complicated wave phenomena are resolved, (2) is characterized by an automatic constraint which is
key to providing a prediction of all internal multiple at once, and (3) we discussed the algorithm's
insensitivity to reference velocity, con�rmed by a set of numerical tests on 2D acoustic data.
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Figure 6: Zero o�set section of predictions using di�erent reference velocity: (a) raw data, (b) c = 1300m/s,
(c) c = 1400 m/s, (d) c = 1500 m/s, (e) c = 1600 m/s, (f) c = 1700 m/s.
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Figure 7: Single shot gather results using di�erent reference velocity: (a) raw data, (b) c = 1300 m/s, (c)
c = 1400 m/s, (d) c = 1500 m/s, (e) c = 1600 m/s, (f) c = 1700 m/s.
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Wavelet estimation from the reference wave in the Kristin data set

L. Tang, A. B. Weglein, P. Terenghi and J. D. Mayhan

Abstract

Wavelet estimation is an important issue in the process of seismic exploration. One possible
approach consists in deconvolving the direct wave in the data by a Green's function. This
approach is used with the Kristin �eld data tests. The estimated wavelet has been further used
in multiple removal and imaging work.

1 Introduction

In seismic exploration, re�ection data recorded on the measurement surface depend on both the
properties of the subsurface medium and the source signature. In order to extract information
about the properties of the subsurface medium from the recorded data, the contribution of the source
signature must be removed. Therefore, it is important to obtain accurate wavelet information.

Weglein and Secrest (1990) provided an algorithm for wavelet extraction using the pressure �eld and
its normal derivative on the measurement surface without knowledge of the properties of the earth.
This algorithm has been implemented by Mayhan and Weglein (2009). For the Kristin data, since
the normal derivative of the wave�eld on the measurement surface is unknown, we choose to extract
wavelet information directly from �eld data by exploiting the physical separation between the direct
and re�ected wave�eld. The method used in this report has a straightforward physical meaning and
does not involve complicated numerical calculation. However, its applicability is limited since the
direct and re�ected wave�eld can only be separated in the near o�set region. In the far o�set area
the two wave�elds display an overlap. In this report we will focus our calculation in the near o�set
region.

2 Method

In scattering theory, we treat the actual medium as a combination of an unperturbed medium,
called the reference medium, plus a perturbation. Correspondingly, the total measured wave�eld P
is the summation of the reference wave P0 and the scattered wave Ps. The inverse scattering series
(ISS) algorithm requires that the reference medium agree with the actual medium at and above
the measurement surface (Weglein et al. (2003)). In the marine environment, such as in the case of
Kristin data, since sources and receivers are located underwater, we may treat a half-space water
with speed c0, plus a half space of air as the reference medium. We consider a 1D homogeneous
acoustic medium and assume that a point source and receivers are located at ~rs = (xs, ys, zs) and
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~r = (x, y, z), where zs and z are the depths of the source and receivers, respectively. The reference
wave P0 satis�es the di�erential equation(

∇2 − 1
c2

0

∂2

∂t2

)
P0(~r, ~rs, t) = A(t)δ(x− xs)δ(y − ys)

{
δ(z − zs)− δ(z + zs)

}
, (1)

where A(t) is the source signature that we pursue in this report. The corresponding Green's function
satis�es (

∇2 − 1
c2

0

∂2

∂t2

)
G0(~r, ~r

′
; t) = δ(x− x′)δ(y − y′){δ(z − z′)− δ(z + z′)

}
δ(t), (2)

Fourier transforming from the time domain to the frequency domain gives(
∇2 +

ω2

c2
0

)
P0(~r, ~rs, ω) = Ã(ω)δ(x− xs)δ(y − ys)

{
δ(z − zs)− δ(z + zs)

}
, (3)(

∇2 +
ω2

c2
0

)
G0(~r, ~r

′
, ω) = δ(x− x′)δ(y − y′){δ(z − z′)− δ(z + z′)

}
. (4)

The expression of G0 will be discussed in section 2.2. Thus, the reference wave�eld P0 can be
calculated by

P0(~r, ~rs, ω) =
∫
Ã(ω)δ(x′ − xs)δ(y′ − ys)

{
δ(z′ − zs)− δ(z′ + zs)

}
G0(~r, ~r

′
, ω)dx′dy′dz′

= Ã(ω)G0(~r, ~rs, ω). (5)

Therefore, the wavelet can be obtained by

Ã(ω) =
P0(ω)
G0(ω)

(6)

Alternatively, in the time domain, the wavelet is the convolution of the direct wave and inverse
reference Green's function,

A(t) = P0(t) ∗G−1
0 (t). (7)

Equation 7 is the method used to calculate the wavelet from Kristin data. The following two sections
in this document discuss how to obtain an estimation of the direct wave on �eld data, and how to
calculate the Green's functions. The test result of wavelet is then shown, with discussions of its
angle variation and the presence of free-surface.

2.1 Direct Wave

In Kristin data, direct wave P0 can be identi�ed from the raw data directly where P0 and scattered
wave Ps do not overlap, as shown in Figure.1. In the more general case of an overlap, P0 can still be
isolated using the algorithm proposed by Weglein and Secrest (1990), and this algorithm has been
implemented by Mayhan and Weglein (2009).
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Figure 1: Kristin data, type I, cable II (sources at depth 7 m and receivers at depth 18 m).

2.2 Green's function

The reference Green's function is the causal solution of equation 4 (Morse and Feshbach (1953),
chapter 7), which is

G0(~r, ~r
′
, ω) =

1
4π

(
eikR

R
− eikRI

RI
) (8)

= Gd0 +GFS0 , (9)

where k = ω/c0, ~r = (x, y, z), ~r
′

= (x′, y′, z′) and

R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 (10)

RI =
√

(x− x′)2 + (y − y′)2 + (z + z′)2. (11)

Here Gd0 represents the portion of the direct arrival from the source to the receiver, and GFS0

represents the wave that experiences a re�ection at the air-water interface in the reference medium.
The only information required for calculating Green's function is the location of the source and
receiver, therefore the reference Green's function can be calculated directly.

3 Wavelet Estimation Result

Having the reference wave P0 obtained directly from the raw data, the reference Green's function
G0 calculated from the con�guration of source and receiver, and using equation 7, the wavelet A(t)
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can be extracted independently from each trace. In Kristin data cable II with sources located at
depth 7 m and receivers at depth18 m, the wavelet is calculated as shown in Figure 2. For the deep
cable (sources at depth 7 m, receivers at depth 25 m) the same method is applied, and wavelet is
shown in Figure 3.

Figure 2: Wavelet A(t), cable II (sources at depth 7 m and receivers at depth 18 m).

Figure 3: Wavelet A(t), cable III (sources at depth 7 m and receivers at depth 25 m).

4 Discussion

4.1 Angle Variation Property

The source signature displays angle variation. A propagation angle can be obtained from the
coordinates of the source and receivers. Since the wavelet is estimated independently at each
receiver, its variations can be seen as a description of the air gun array's radiation pattern. From
our test results of both cables, the wavelet is fairly consistent within individual shot record, not
showing strong variations with angle.
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We notice that in the near o�set some receivers might be located very close to the shock area
created by the air gun. The corresponding traces show disturbance, which re�ect into the estimated
wavelets. Also in the further o�set area, the reference wave P0 is getting smaller due to destructive
interference between the reference wave and the scattered wave. When P0 is comparable to the
noise around them, the wavelet result is disturbed, too.

4.2 Using Direct Green's Function

The results shown so far were obtained using the total Green's function G0 for a homogeneous
half space of water, which is composed of a direct Green's function Gd0 plus a free surface Green's
function GFS0 . If the direct Green's function Gd0 is used instead of the total Green's function G0 in
equation 7, the result is shown in Figure 4.

Figure 4: Wavelet A(t), cable II (sources at depth 7 m and receivers at depth 18 m), using direct Green's
function Gd0.

The result in Figure 4 can be interpreted as estimates of the e�ect of the source in the presence of
a free surface as proven by the decreasing amplitude trends for increasing o�sets. The reason can
be found in the expression of Gd0. As

Gd0(~r, ~r′, ω) =
1

4π
eikR

R
(12)

and

G0(~r, ~r′, ω) =
1

4π
(
eikR

R
− eikRI

RI
), (13)

at large o�set, the two terms of total G0 tend to cancel each other, thus G0 gets smaller, whereas
Gd0 still gets larger as distance grows. On the other hand, reference wave P0 also consist of direct
arrival and free surface ghost, which will cancel each other at large o�set, too. Therefore, when
using total G0 the amplitude of the wavelet is stable, while Gd0 makes the wavelet vanish.
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1D preprocessing of Kristin data

P. Terenghi, X. Li, Shih-Ying Hsu and Arthur B. Weglein

Abstract

We document the processing applied to a set of seismic exploration data, the Kristin survey,
chosen for the �rst �eld test of the inverse scattering series direct depth imaging algorithm.
As an initial approach, we choose to operate certain processing steps under the assumption of
a horizontally layered earth. In order to minimize the necessary inaccuracies, we implement
a �ltering methodology in the Fourier domain which seeks to attenuate the portions in the
data related to rapid structural or lithological variations, such as the di�ractions caused by
small-scale heterogeneities in the shallow overburden. The applied processing �ow begins from
previously de-ghosted data, and features free-surface and internal multiple attenuation using
the 1D versions of the inverse scattering series multiple prediction methods.

1 Introduction

Kristin is a marine seismic exploration survey carried out in an area of the North Sea (Figure 1a)
characterized by gentle structural variations and moderate re�ector dips. The acquisition apparatus
(Figure 1b) features multiple streamer cables towed at di�erent depths and arranged in an asym-
metric split-spread, designed to avoid the problem of near o�set extrapolation (Majdanski et al.,
2010). Because of both its acquisition setup and its geologic setting, the Kristin survey was chosen
to demonstrate the inverse scattering series (ISS) direct depth imaging algorithm (Liu et al., 2004,
2005; Liu, 2006; Zhang et al., 2007; Wang et al., 2009) in its �rst �eld data test.

In this �rst approach to the Kristin data we choose to perform some of the key processing steps
under a 1D earth assumption. The choice is motivated by the necessity to allow a fast turnaround
for parameter testing, and enabled by the observation of the moderate dips and gentle curvatures
of many re�ectors of interest. Additionally, the current capture in the ISS direct depth imaging
algorithm has a limited capability of handling purely multidimensional wave-propagation e�ects,
such as di�ractions, which are therefore to be attenuated or suppressed.

Although the 1D earth assumption is hardly ever true in any real-life scenarios, in an earth with mild
lateral changes the 1D approach can sometimes represent a reasonable compromise between cost
and bene�ts. Also, using data sorted in common midpoint gathers may o�er symmetries which can
help minimizing the inaccuracies. Moreover, in certain geologic settings, seismic exploration data
are often treated with blunt noise reduction tools, such as multichannel coherency �lters, to increase
the signal-to-noise level, or subject to preconditioning processes which often implicitly or explicitly
make a 1D earth assumption. One example of such processes is the normal moveout correction,
which is often used in connection with Radon transform-based tools. Although we advocate that
processing methods should accomodate the complexity of the medium, we are con�dent that this
1D approach represents a worthwhile experience and a viable choice for certain real-life seismic
exploration problems.
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(a) (b)

Figure 1: (a) Location of the Kristin survey, o�-shore Trondheim in the North Sea, and (b) layout of
streamer cables for the Kristin survey (after Majdanski et al. (2010)). Three cables are towed
in the vertical plane of the sail line; two more are towed laterally. The airgun array is towed
within the length of the cables to form an asymmetric split spread. Courtesy of Statoil ASA and
Schlumberger.

The processing chain applied to the Kristin data begins with the deghosted up-going �eld. The
initial steps include: (1) regularization of the geometries, (2) interpolation of constant o�set gathers
(increase CMP fold and equalize source and receiver spacing), (3) CMP binning, (4) redatuming
of source and receivers to a common depth of 7m, (5) application of source-receiver reciprocity to
obtain two-sided CMP gathers. Ultimately, a subset of the data composed of 301 shots of 301 traces
each, is selected and carried through the subsequent processing steps.

The above operations are performed using well-established traditional processing techniques whose
detailed description is beyond the scope of this document. Here, the focus is rather on the traditional
as well as ISS-based processing steps speci�cally aimed at conditioning the Kristin data in a way
suitable for the current capture in the ISS direct depth imaging series.

The body of this report will �rst describe a �ltering technique which mitigates the errors a 1D
processing chain may produce on real-life data. Then, the prediction and subtraction of multiples
related to the free surface will be documented and examples will be shown. The last section will
discuss the result and issues in the current e�ort to suppress internal multiples.

2 Wave�eld conditioning

This section describes a �ltering technique based on concepts outlined in Weglein and Stolt (1999),
in the context of a discussion on the uncollapsed imaging condition. Those ideas are used here with
the aim to attenuate the portions in the data related to rapid lateral variations in the properties of
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Figure 2: Wave�eld conditioning. A sketch representing the portion of the wave�eld that yields |kg − ks|
small, untouched in the output.
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Figure 3: Wave�eld conditioning. Sketches representing the portion of the wave�eld that yields |kg − ks|
large, suppressed in the output: (a) plane wave incident on a dipping, smooth, locally planar
re�ector, obeying Snell's law; (b) plane wave scattering in all directions at a highly curved feature
of the earth.
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the earth, such as di�ractions or re�ections at steeply dipping interfaces. Those wave phenomena
are incompatible with the assumption of a horizontally layered earth and are likely to act as sources
of error if treated with 1D algorithms.

Our approach is based on a full plane wave decomposition of the entire dataset D(xg, xs, ω), through
Fourier transforms on time t, receiver coordinate xg, and source coordinate xs,

D(kg, ks, ω) =
∫ ∫ ∫

∞
dt dxg dxse

iωt−ikgxg+iksxs D(xg, xs, t), (1)

where ω is the angular frequency, and kg and ks are the receiver-side and source-side horizontal
wavenumbers. If every re�ector in the earth is simplistically treated as a boundary between a
homogeneous overburden with velocity c0, and an underlying medium with velocity c1, then ks and

kg may also be seen as horizontal components of incident and re�ected wavenumber vectors
−→
ki ,
−→
kr ,

−→
ki = {ks, qs}, −→

kr = {kg, qg}, (2)

where the quantities qg and qs represent the receiver and source-side vertical wavenumbers, con-
strained by the dispersion relationship (Stolt and Jacobs, 1980; Etgen, 1988)

qg = signum(ω)

√
ω2

c2
0

− k2
g , qs = signum(ω)

√
ω2

c2
0

− k2
s .

Consider a down-going plane wave, re�ected upwards by a locally plane re�ector characterized by
an out-going normal n̂ (Figures 2 and 3a). The relationship between the propagation directions of
the incident, re�ected, and transmitted waves are governed by the equations (Cerveny, 2001),

−→
kr =

−→
ki − n̂[2

−→
ki · n̂], (3)

−→
kt =

−→
ki − n̂

[
(
−→
ki · n̂)− ε

√
1/c2

1 − 1/c2
0 + (

−→
ki · n̂)2

]
, (4)

where ε = signum(n̂ ·−→ki ) and c0 and c1 are the acoustic velocities in the incidence and transmission
media. A plane wave traveling down from the source conserves its horizontal wavenumber when
re�ected upwards by a horizontal interface, so that kg = ks. In the more general case of a dipping
plane re�ector, the di�erence between ks and kg is proportional to the magnitude of the horizontal
component of the re�ector's outgoing normal. Additionally, a similar argument can be shown to
hold for the relationship between the incident and transmitted wave.

Following that reasoning, and assuming the earth is characterized by moderate dips and gently
curved re�ectors, a �ltering procedure can be devised that attenuates the regions of the Fourier
transformed data volume D(kg, ks, ω) characterized by arbitrarily large absolute values of kg − ks.
Requesting that the quantity |kg − ks| be small amounts to discarding waves that either re�ect
at steeply dipping interfaces or scatter where the interface is highly curved (Figures 3a and 3b).
Therefore, this procedure attenuates those portions in the data related to rapid lateral variations in
the properties of the earth, such as di�ractions caused by small-scale heterogeneities in the shallow
overburden or steeply dipping interfaces.
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Since quantities ks and kg can be simply related to the incidence and re�ection angles θs (positive
clockwise from the vertical) and θg (positive anti-clockwise from the vertical),

ks =
ω

c0
sinθs kg =

ω

c0
sinθg,

it is also possible to further characterize the e�ect of the �lter as selectively attenuating waves
that yield large di�erences between their take-o� angle θs at the source and emergence angle θg
at the receiver. It is ultimately important to emphasize how the proposed methodology takes
simultaneously into account the properties of the wave�eld on the source and receiver side, and
therefore substantially di�ers from using traditional FK �lters sequentially in the shot domain and
receiver domain.

Examples of the e�ects of this procedure applied to the Kristin data are shown in Figure 4 and
Figure 5.
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(a)

(b)

Figure 4: Attenuation of the portion of the data related to rapid lateral variations in the earth. Three shot
gathers selected from the Kristin data before (a) and after (b) �ltering in the Fourier domain.
The comparison of (a) and (b) demonstrates the attenuation of di�racted energy, in particular
between 0.5 and 0.9 s in the near o�set traces. Data plotted with a t2 gain applied.
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(a) (b)

Figure 5: Attenuation of the portion of the data related to rapid lateral variations in the earth. Zero
o�set sections of the Kristin data before (a) and after (b) �ltering in the Fourier domain. The
comparison of (a) and (b) demonstrates the attenuation of di�racted energy, apparent in the
shallow zone between 0.5 and 0.9 s. Data plotted with a t2 gain applied.
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3 1D free-surface multiple prediction

The ISS free surface multiple prediction series is a wave-theoretical method for the removal of
surface-related multiples in a multidimensional earth. Its formulation (Carvalho, 1992; Weglein
et al., 1997) consists of an in�nite series, having as �rst term D′1 a de-ghosted version of the input
data D. All higher order terms (n = 2, 3, ...) are de�ned by the recursive expression

D′n(kg, ks, ω) =
A−1(ω)
iπρ0

∫
∞

dk eiq(zs+zg) D′1(kg, k, ω)q(k, ω)D′n−1(k, ks, ω), (5)

where ω is the angular frequency, k, kg, and ks are the horizontal wavenumbers, zg and zs the
depths of receivers and sources, ρ0 and c0 are the reference medium's density and acoustic velocity,
A−1(ω) is the inverse of the source signature and

q(k, ω) = sign(ω)
√
ω2/c2

0 − k2.

Under the assumption of a horizontally layered (1D) earth, the data become invariant with respect
to the midpoint location, but conserve their dependency on source-to-receiver o�set,

D′n = D′n(xg − xs, ω). (6)

Thus, the integral method in equation 5 reduces to a simple analytic algorithm in the frequency-
wavenumber domain (Carvalho, 1992, section 5.1),

D′n(k, ω) =
2q(k, ω)A−1(ω)

iρ0
eiq(zs+zg) D′1(k, ω)D′n−1(k, ω) (7)

where k represents the Fourier conjugate to the o�set variable xg − xs.
For the Kristin data, the prediction of free surface multiples is obtained using the leading order 1D
ISS algorithm (equation 7 with n = 2), evaluated independently over each common midpoint (CMP)
gather, and subsequently adjusted using a 1D (trace-by-trace) traditional least-square adaptive
subtraction algorithm.

A selection of input CMP gathers and corresponding demultipled results are shown in Figures 6a
and 6b. An alternative view is provided in the zero-o�set section in Figures 7a and 7b. The earliest
free surface multiple (related to the water bottom re�ection) appears at a recording time of 0.95-1.0
s, characterized by a gentle dip towards the right-hand side of Figure 7(a,b), and closely followed
by other water-column reverberations. Speci�cally in the interval between 0.9 and 2 s, the removal
of free surface multiples reveals events which were previously hidden by large amplitude free surface
multiples. The most noticeable examples are the newly visible re�ectors (emphasized by arrows) at
0.9, 1.1, 1.5, and 2s.
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(a)

(b)

Figure 6: free surface multiple elimination. CMP gathers from the Kristin data before (a) and after ISS
free surface multiple prediction and adaptive subtraction (b). The single-channel subtraction
algorithm was parametrized to act on 1.5 s long temporal windows, sliding of 0.25 s. Data
displayed after t2 gain.
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(a) (b)

Figure 7: free surface multiple elimination. Zero o�set sections of the data before (a) and after ISS free
surface multiple prediction and adaptive subtraction (b). The single-channel subtraction algo-
rithm was parametrized to act on 1.5 s long temporal windows, sliding of 0.25 s. The arrows
indicate re�ections revealed after the removal of free surface multiples (0.9, 1.1, 1.5, and 2.0 s).
Data displayed after t2 gain.
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4 1D internal multiple prediction

The ISS provide a wave-theoretical method for the attenuation of internal multiples in a multi-
dimensional earth. The internal multiple algorithm provides an accurate prediction of the travel
time of all internal multiples, and an approximated estimate of their amplitudes, without requiring
a priori subsurface information, nor an interpretation of the portions of the earth chosen to pro-
vide the subevents to construct the prediction (Weglein et al., 2003). A more detailed description
accompanied by explicatory numerical examples may be found elsewhere in this volume.

Speci�c 2D formulations of inverse scattering multiple attenuation series appear in Araújo (1994);
Araújo et al. (1994); Weglein et al. (1997); Kaplan et al. (2004, 2005). The leading order term in
the series is

bIM3 (kg, ks, ω) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

dk1e
−iq1(zg−zs)dk2e

iq2(zg−zs)∫ ∞
−∞

dz1b1(kg, k1, z1)ei(qg+q1)z1∫ z1−ε

−∞
dz2b1(k1, k2, z2)e−i(q1+q2)z2∫ ∞

z2+ε
dz3b1(k2, ks, z3)ei(q2+qs)z3 , (8)

where ω is the temporal frequency; kg and ks are the horizontal wavenumbers for source and receiver
coordinates, respectively; the vertical source and receiver wavenumbers, qg and qs, are de�ned as

qi = sgn(ω)
√
ω2/c2

0 − k2
i for i = (g, s); c0 is the constant background velocity; zs and zg are source

and receiver depths; and zi (i = 1, 2, 3) represents pseudodepth (depth location given by migration
with background velocity). The quantity b1 is the �rst order term in the series for internal multiple-
free result and corresponds to an uncollapsed prestack Stolt migration (Stolt, 1978; Weglein et al.,
2003) of an e�ective plane-wave incident data and scaled by an obliquity factor,

b1(kg, ks, qg + qs) = −2iqsD(kg, ks, ω), (9)

where D(kg, ks, ω) is the Fourier transformed prestack data.

In analogy to the free surface case, the method for a horizontally layered earth can be obtained by
allowing the e�ective data to vary only as a function of source-to-receiver o�set, and dropping the
dependence on midpoint. In that case, nonzero values of b1 may solely be found along the diagonal
of the kg, ks plane (Araújo, 1994, section 4.5)

b1(kg, ks, qg + qs) = 2πδ(kg − ks)b1(kg, 2qg) (10)

where kg − ks can be seen as the Fourier-conjugate of the midpoint variable (xg + xs)/2.

Thus, the expression for the ISS internal multiple prediction algorithm for horizontally layered media
may be written as

bIM3 (k, ω) =
∫ +∞

−∞
dz1b1(k, z1)e2iqz1

∫ z1−ε

−∞
dz2b1(k, z2)e−2iqz2

∫ ∞
z2+ε

dz3b1(k, z3)e2iqz3 , (11)
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Figure 8: A zero o�set section featuring the shallow re�ectors in the Kristin data. At the southern end
of the survey (left on of �gure), a continuous internal multiple can be recognized near 0.6 s.
Towards the north, the internal multiple fades out to be replaced by a discontinuous event which
occasionally displays di�raction hyperbolas.

where all horizontal integrals have disappeared and the three remaining integrals operate along the
pseudodepth axis. In equation 11, k represents the Fourier conjugate to the o�set variable and the
algorithm may be applied to a single shot record or to a common midpoint gather.

Keeping in mind that one of the main purposes of this processing e�ort is to condition the data
to best accommodate the characteristics of the ISS depth imaging algorithm, the internal multiples
of highest concern are those located in the shallow portion of the seismic records, which yield the
largest amplitudes and can a�ect the ISS imaging the most. Therefore we bring the attention to the
internal multiple originating between the water bottom and the re�ectors immediately underneath
(Figure 8).

At the time of writing this report, internal multiple attenuation on the Kristin data is work in
progress and what follows is a discussion of the issues being faced. At the southern end of the
survey, where the sea bottom is shallower and dipping more steeply than in other areas, the event
with vertical traveltime around 0.6 s (left on of Figure 8) can be interpreted as an internal multiple
reverberating between the water-bottom and a strong re�ector at 0.51 s. Further north along the
sail-line (left of Figure 8), in the area used in the examples shown in the earlier portion of this
document, the interpreted internal multiple looses its continuity. Our initial attempts to treat the
sub-water-bottom internal multiple in those two subregions of the Kristin data using a 1D approach
have met di�culties for reasons speci�c to the characteristics of the multiples in those two areas.
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In the northern area, the considerable slope of the sea bottom is probably at the origin of the
inaccuracy of the 1D predictions. In the southern area, the sub-water-bottom internal multiple can
be recognized as a cluster of tangled low-amplitude events, rather than a coherent one. The latter
observation indicates that the portion of the wave�eld related to that multiple should be described
in terms of di�ractions at the earth's most irregular features, rather than in terms of re�ections at
smooth interfaces, as is the case under a 1D earth assumption and within the constraints applied
through the processing described in section 2.

In both scenarios the nature of the issues suggests that treating the earth as a horizontally layered
medium will not yield a satisfactory result. The internal multiple removal e�ort on the Kristin data
will therefore continue, using the 2D version of the ISS algorithm which accommodates both the
steep dips in the northern area and the di�ractive character of the medium in the southern end.

5 Conclusions

The Kristin survey was selected for the �rst �eld data test of the ISS direct imaging algorithm,
because of its moderate structural complexity and gentle re�ector dips. In the �rst approach to �eld
data, a choice was made to perform some of the key processing steps under the assumption of a 1D
horizontally layered earth. That choice allows a substantial reduction in the computational cost and
a shorter turnaround time for the testing of parameters. A �ltering methodology was implemented
on the data after Fourier transforms on both source and receiver sides, to mitigate the inaccuracies
which can arise in those circumstances. The �lter selectively suppresses the portion of the wave�eld
related to the earth's rapid lateral variations, such as di�ractions and re�ections at steeply dipping
interfaces. The removal of free surface multiples using the 1D version of the ISS algorithm, followed
by trace-by-trace adaptive subtraction, proved successful at all o�sets and revealed events previously
swamped amid higher amplitude reverberations. The removal of internal multiples turned out to be
di�cult to perform under 1D earth approximation. In one case, the slant nature of the water-bottom
is believed to be at the base of the 1D predictions. In another case, the multiples are thought to
originate mostly by di�raction, an exclusive phenomenon of multidimensional media, and therefore
unaccounted for in the 1D version of the ISS internal multiple prediction algorithm. The internal
multiple removal e�ort on the Kristin data will therefore continue using a 2D approach, which will
accommodate both the steep dips in the northern area and the di�ractive character of the medium
in the southern end.
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Addressing innate data limitations in ISS imaging algorithms: distinct data
regularization methods to address di�erent types of data limitations, to
facilitate and allow speci�c ISS imaging steps and goals

Fang Liu, Xu Li, and Arthur B. Weglein

Abstract

MOSRP's �rst �eld data test of the inverse scattering series imaging algorithm was arranged
for the Kristin condensed gas �eld in the Norwegian Sea. Although the acquisition on a 2D
line is far from the area coverage required by our wave theoretical data processing initiative, a
relatively �at subsurface allows us to extrapolate the existing measurement to other azimuths
and to procure an extensive area coverage by taking advantage of the radial symmetry. We
construct the amplitude pro�le with su�cient low frequency content to further move subsurface
events without velocity information. This �eld data test is very encouraging: The subsurface
target event is migrated towards its actual depth and the event is �attened in the angle gather
using the ISS imaging algorithm derived from the simplest velocity only acoustic formalism.

1 Introduction

The inverse scattering series (ISS) is a comprehensive framework for processing primaries and mul-
tiples without knowing subsurface information, with many task-speci�c subseries that focus on an
individual objective in the seismic processing �ow and is much less demanding on the frequency con-
tent of the seismic data. Its application in removing free surface and internal multiples, for example
Weglein et al. (1997); Matson et al. (1999); Weglein et al. (2003); Weglein and Dragoset (2005);
Ramírez and Weglein (2005); Ramírez (2007); Hsu and Weglein (2009, 2010); Fu et al. (2010), has
provided signi�cant added value and additional capabilities to the current multiple removal meth-
ods, especially retaining e�ectiveness in complicated geology and not demanding knowledge of the
velocity �eld.

The seismic imaging subseries, �rst proposed in Weglein et al. (2000, 2002), was progressed in the
velocity-only (single parameter) framework by Shaw et al. (2003); Innanen (2004); Shaw (2005);
Liu et al. (2005); Liu (2006). It was later expanded for multiple parameter by Jiang and Weglein
(2007); Li et al. (2008); Jiang et al. (2008); Li and Weglein (2010); Wang et al. (2009); Liang
et al. (2009). The objective of this article is to study the viability of the ISS imaging algorithm in
�eld data, especially the lack of low frequency information in the �eld measurements. A detailed
documentation of the issues caused by missing low frequencies information can be found in Shaw
(2005).

In seismic exploration, regularization procedure is often needed to convert the irregular �eld mea-
surement to a regular form prefered by algorithms, or in other words to �x certain issues in the
�eld data. For example: to regularize the non-uniform sampled data to have uniform sampling, or
to �ll in the mising gap in the frequency band or the measurement surrface. To address data issues
discussed in this article, the following regularization methods are popular in exploration seismology,
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1. Using nearest neighbor, or NMO based method to obtain uniform sampling in space.

2. Auto regression or interpolation algorithms to �ll the frequency gap.

3. Deconvolution methods.

4. Asymptotics, stationary phase approximation to reduce the burden on wave theoretical pro-
cessing that demands measurement everywhere.

All ISS imaging algorithms are currently formulated as a Taylor series expansion of a box and have
certain innate data limitations/sensitivities/issues,

• The current form (Taylor expansion of boxes) requires low frequency information since a box
contains the zero frequency information. This issue is present for all our current imaging
subseries. The solution in Kristin is demonstrated in this report.

• The inconsistence between events from di�erent angles. This issue exists for multiparameter
imaging subseries, and has been addressed in Liu and Weglein (2010).

The regularization methods documented in this article to address �eld data limitations are oriented
toward maximizing physics (in terms of both amplitude and phase) in the data and minimizing
adaptive measure in processing. The major contributions of this article to allow the ISS imaging to
function in the face of innate limitations are,

1. Fourier Bessel transform,

• synthesizes a plane wave experiment with many sources, much higher energe, and much
more low frequency information,

• o�ers a simple and robust solution for data reconstruction and reduces the burden on
o�set regularization,

• provides a fast and easy implementation of deghosting.

2. Source signature regularization,

• makes the �eld experiment consistent with the ISS world,

• greatly improves the quality of image,

• reduces the negative impact of sparse sampling in x.

3. Source side deghosting,

• improves low frequency,

• implemented in the plane wave world.

4. The three steps above provide us with a quantity physically comparable to α1 in the language
of ISS, pave the way for the adaptive factor of 0.34.
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Figure 1: Top: the original spike. Middle: Add a function (in red) without zero frequency information to
the original spike. Bottom: the resulting migrated spike.

One of M-OSRP's future direction is to avoid this innate limitations for low frequency information
by formulating algorithms to move spikes rather than boxes. The ISS internal multiple removal
subseries is operated on spike events, and has much less dependency on low frequency information.
The internal multiple subseries takes advantage of structures very similar to cross correlation rather
than a simple integral in the imaging subseries. The di�erence between two boxes has zero frequency
information, that is why the current imaging subseries demands low frequency to be e�ective.
One the other hand, the di�erence between two spikes has no zero frequency information, this
fundamental di�erence implies that the e�ectiveness of the new imaging form should remain without
low frequency as illustrated in Figure 1.

The following items are some unfavorable facts we faced in this experiment.

• Compared with the original �eld data, the input data at our stage went through a gain of
approximately the order of t2 to boost the deeper events. It is highly possible that this gain
was applied to convert the 3D propagation in the data to 2D propagation favored by many
seismic processing packages. Our wave theoretical methods are derived for real propagation
in the actual 3D world. Upon the advice of Terenghi, we applied a t−2 gain to undo its e�ect.

• In the process of regularizing the acquisition into a relatively uniform sampling in space, the
amplitude of our input data was altered by NMO like operations based on the velocity model.

• The original Q-marine data were grouped to enhance signal/noise ratio. This operation
changes the recording at the physical location and causes array e�ects. Our wave theoretical
methods prefer single sensor measurement obtained in each physical location. Feng et al.
(2002) described some unfavorable impacts of array e�ects on inverse series.
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• Missing zero o�set data: the minimum o�set for the towed streamers is 35 m in the example
presented in this article. In the previous numerical examples we tried, we have split spread
synthetic data with zero minimum o�set.

• 2D acquisition in a three dimensional world.

• The original lateral sampling interval is very big: 37.09 m. By increasing the size of the CDP
bin, Terenghi produces CMP gathers with many more traces. The lateral sampling interval is
decreased to 12.32 m after CDP rebinning. We prefer this smaller o�set sampling interval for
the accurate implementation of transforms over lateral coordinates.

• We used the simplest data reconstruction method (assuming a 1D earth) used to procure an
area coverage of measurement. More sophisticated procedures, for example Stolt and Benson
(1986); Wapenaar et al. (1992); Ramírez (2007); Wang et al. (2008), should be considered for
more complicated geology.

• We applied the simplest deghosting algorithm (assuming a 1D earth) to remove the source
ghost.

• The simplest ISS imaging method (velocity-only formalism) is used without any cross commu-
nication between events from di�erent angles1. No curvature information is used to achieve
the �attened common image gather.

Considering the amount of compromising we had to accept or make in the data processing, the
richness in deterministic physics exceeds our original expectations: The target is solidly migrated
toward its actual location and the ISS imaging algorithms are shown to be viable under the current
�eld data conditions.

2 Preprocessing

In the inverse scattering series the imaging task assumes the information of the source signature
(wavelet), the exclusion of direct arrivals, and the removal of ghosts and multiples.

We received Kristin �eld data in three stages:

• Stage I data: Three cables of measurement with irregular geometry at di�erent depths (zg = 9,
18, and 25 m, respectively) after group forming, with temporal sampling rate ∆t = 2 ms. It
had been used by Tang et al. (2011) to calculate the source signature (wavelet) used in this
paper.

• Stage II data: Removal of direct wave and o�set regularization.

• Stage III data: Separated up- and down-wave�eld at another �xed depth (zg = 50 m), with
bigger temporal sampling rate ∆t = 4 ms. We only used the up-going wave�eld. Minimum
o�set: 35 m, maximum o�set 5948 m.

1In more advanced ISS imaging formalism, for example Zhang and Weglein (2004); Zhang (2006); Li et al. (2008);
Wang et al. (2010); Liang et al. (2010), events from di�erent angles will communicate to kick out density contribution.
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• Angle dependent wavelet from 0◦ to 90◦: The technical details in Ziolkowski et al. (1982). It is
obvious that this wavelet (de�ned as the radiation pattern of a seismic source in the presence
of the free surface) describes the recorded wave at a very large distance from the source and
has a di�erent de�nition from our objective.

3 Conventions, notations, and de�nitions

In this article we use c0 to denote the constant unchanged reference velocity
2. The symbol

4
= denotes

the de�nition of a variable or function.

We use t to denote time and ω to denote its Fourier conjugate (temporal frequency). We put the˜ sign above a function to denote its Fourier transform. Due to historical reasons we often use
distinct Fourier convention for di�erent situations. The Fourier transform of a function f(t) in the
time domain into its spectrum in the frequency domain is de�ned as:

f̃(ω) =

∞∫
−∞

f(t)eiωtdt. (1)

The corresponding inverse Fourier transform is de�ned as:

f(t) =
1

2π

∞∫
−∞

f̃(ω)e−iωtdω. (2)

We use z to denote depth (the vertical coordinate), and its Fourier conjugate is denoted as vertical
wavenumber kz. zg and zs denote the depth of receiver and source, respectively. The forward and
inverse Fourier transforms between z and kz are respectively de�ned as:

f̃(kz)
4
=

∞∫
−∞

f(z)eikzzdz , f(z)
4
=

1
2π

∞∫
−∞

f̃(kz)e−ikzzdkz. (3)

On the other hand, the Fourier transform between ~x = (x, y) (the horizontal coordinates) and
~km = (kmx, kmy) (the horizontal wavenumbers) is de�ned with a di�erent sign convention:

f̃(kmx)
4
=

∞∫
−∞

f(x)e−ikmxxdx , f(x)
4
=

1
2π

∞∫
−∞

f̃(kmx)eikmxxdkmx, (4)

f̃(kmy)
4
=

∞∫
−∞

f(y)e−ikmyydx , f(y)
4
=

1
2π

∞∫
−∞

f̃(kmy)eikmyydkmy, (5)

2It is also called migration velocity since it is the constant velocity �eld input into our imaging algorithm.
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f̃(~km)
4
=

∞∫
−∞

f(~x)e−i~km•~xd~x , f(~x)
4
=

1
4π2

∞∫
−∞

f̃(~km)ei~km•~xd~km. (6)

We use xm to denote the x-coordinate the midpoint and xh denote the o�set (source-receiver
distance) in the x direction.

We use the function c(x, y, z) to denote the subsurface velocity �eld. The di�erence between c and
the often homogeneous reference velocity c0 is the perturbation α,

α(x, y, z) = 1− c2
0

c2(x, y, z)
, (7)

which is expanded in an in�nite series,

α = α1 + α2 + α3 + · · · , (8)

where the �rst term α1 is the part of α linear in terms of measured data, the second term α2 is the
quadratic contribution in terms of measured data, etc. α1 is more commonly named water speed
FK migration in the geophysical literature.

4 Theory

4.1 Radon transform

The Radon transform3 is one of the critical steps in our work; the purpose of this operation is to
construct an α1 image in the velocity-only framework. Its derivation and physical meaning can
be found in equation 31 of Liu and Weglein (2007) more detail can be found in Liu (2006). The
Radon transform is a natural and convenient step in our parameterization. For a function with
radial symmetry it reduces to the Fourier Bessel form, as described below.

A function f(~x, t) can be transformed from (~x, t) to (~p, τ) domain via a Radon transform:

F (~p, τ)
4
=

∞∫
−∞

dx

∞∫
−∞

dyf(~x, τ + ~p • ~x). (9)

The equation above can also be computed from the spectrum in the frequency domain using a fast
Fourier transform,

3It is also named (τ, p) transform or slant stack.
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F (~p, τ) =

∞∫
−∞

∞∫
−∞

dxdyf(~x, τ + ~p • ~x) =

∞∫
−∞

dx

∞∫
−∞

dy
1

2π

∞∫
−∞

dωf̃(~x, ω)e−iω(τ+~p•~x)

=
1

2π

∞∫
−∞

dωe−iωτ
∞∫
−∞

dx

∞∫
−∞

dye−iω~p•~xf̃(~x, ω).
(10)

By de�nition F (~p, τ) can also be calculated from its frequency domain spectrum F̃ (~p, ω) as,

F (~p, τ) =
1

2π

∞∫
−∞

dωe−iωτ F̃ (~p, ω). (11)

Note that equations 10 and 11 are both Fourier transforms of the same form, and both result in the
same function F (~p, τ). Due to the properties of the Fourier transform, they must have the same
kernel. Hence we have,

F̃ (~p, ω) =

∞∫
−∞

dx

∞∫
−∞

dye−iω~p•~xf̃(~x, ω). (12)

Note that the double integral in the above expression is also a forward Fourier transform over ~x
de�ned in equation 6, applied on the frequency spectrum f̃(~x, ω), with the wavenumber vector set
as ~k = ω~p. Consequently, in the frequency domain the Radon transform in equation 9 can be
calculated as a Fourier transform over ~x with restriction ~k = ω~p.

For our speci�c purpose, we take the py-component of ~p to be zero and use ~p = (p, 0) and assume

radial symmetry: f(x, y, t) = f(ρ, t) where ρ =
√
x2 + y2 = |~x|, and the above transform can be

written as:

F (p, 0, τ) =

∞∫
−∞

dx

∞∫
−∞

dyf(ρ, τ + px) =

∞∫
0

ρdρ

2π∫
0

dθf(ρ, τ + pρ cos θ). (13)

We evaluate the time-domain function f(ρ, τ + pρ cos θ) by the inverse Fourier transform 4 from its
spectrum f̃(ρ, ω), and the expression above becomes,

4It is de�ned in equation 2.
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=

∞∫
0

ρdρ

2π∫
0

dθ
1

2π

∞∫
−∞

dωf̃(ρ, ω)e−iω(τ+pρ cos θ)

=
1

2π

∞∫
−∞

dωe−iωτ
∞∫

0

ρdρf̃(ρ, ω)

2π∫
0

dθe−iωpρ cos θ.

(14)

The innermost integral in equation 14 can be further simpli�ed as,

2π∫
0

dθe−iωpρ cos θ =

π∫
0

dθ
[
e−iωpρ cos θ + e−iωpρ cos(θ+π)

]
=

π∫
0

dθ
[
e−iωpρ cos θ + eiωpρ cos(θ)

]

= 2

π∫
0

dθ cos [ωpρ cos θ] ,

and the original transform reduces to,

F (p, 0, τ) =

∞∫
−∞

dωe−iωτρdρf̃(ρ, ω)
1
π

π∫
0

dθ cos [ωpρ cos θ]

=

∞∫
−∞

dωe−iωτ
∞∫

0

ρdρf̃(ρ, ω)J0(ωpρ).

(15)

The last step in the above drivation uses the integral de�nition of the Bessel function, for example
equation 9.1.18 of Abramowitz and Stegun (1965).

In this article, the angle θ is also used5. Its relation with p is as follows,

p =
sin θ
c0

,

θ = arcsin [c0p] ,
(16)

where c0 is the reference velocity (homogeneous whole-space water speed in this example).

Assuming a bandlimited seismic source with signature equal to the �rst derivative of a Gaussian
located at zs = 0,

5For example, the image is carried out in the angle gather.
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w(t) = − a3t

4
√
π
e−a

2t2/4 ⇔ w̃(ω) = −iωe−ω2/a2
. (17)

According to equation 7.3.8 of Morse and Feshbach (1953), the causal Green's function in a 3D

medium with homogeneous velocity �eld c(x, y, z) ≡ c0 is: G0(r, t) = − 1
4π

δ(t−r/c0)
r , where r is the

distance of the receiver from the source. For receivers located near the surface with depth zg = h,
the recording will be:

f(ρ, t) = − 1
4π

A(t− r
c0

)
r

= − 1
4π

A
(
t−

√
ρ2 + h2/c0

)
√
ρ2 + h2

, (18)

which can be transformed into frequency domain to have,

f̃(ρ, ω) = − 1
4π

Ã (ω) eiω
√
ρ2+h2/c0√

ρ2 + h2
=
iω

4π
e−ω

2/a2+iω
√
ρ2+h2/c0√

ρ2 + h2
, (19)

where ρ is the horizontal distance of the receiver from the source. Figure 4 shows the recorded
wave�eld at depth zg = h = 500 m. Calculating equation 15 with equation 19 as the input, we have
the corresponding transform result, shown in Figure 5.

The e�ectiveness of the 3D Radon transform in recovering the low frequency information from the
data produced by a source without zero frequency is presented in Figure 6.

The 3D Radon trasform can perfectly recover 3D spherical divergence. For example, for both direct
and re�ected waves, the event will have the same amplitude regardless of the distance of the source,
receiver, or re�ectors. This is not true for a 2D Radon transform applied on a 3D data set.

In exploration seismology, 2D Radon transforms are more commonly used. For a function f(x, t),
its Radon transform F (p, τ) is de�ned as,

F (p, τ)
4
=

∞∫
−∞

f(x, τ + px)dx, (20)

and can be computed in the frequency domain as a fast Fourier transform over τ ,

F (p, τ) =

∞∫
−∞

f(x, τ + px)dx =

∞∫
−∞

dx
1

2π

∞∫
−∞

dωe−iω(τ+px)f̃(x, ω)

=
1

2π

∞∫
−∞

e−iωτdω

∞∫
−∞

e−iωpxf̃(x, ω)dx.

(21)
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4.2 The e�ects of Radon transforming a 3D wave equation

Collectively denoting the lateral variables x and y as a vector ~x = (x, y), we consider a 3D wave
propagation in a velocity-only acoustic medium without lateral variations,

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1
c2(z)

∂2

∂t2

)
P (~x, z, t) = A(t)δ(x)δ(y)δ(z). (22)

We apply the time-domain Fourier transform de�ned in equation 1 to the above wave equation to
obtain a Helmholtz equation,

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

ω2

c2(z)

)
P̃ (~x, z, ω) = Ã(ω)δ(x)δ(y)δ(z). (23)

Applying the frequency domain Radon transform speci�ed in equation 12, with ~p = (p, 0), the
following relations are straightforward: px = p, py = 0, kx = ωpx = ωp, ky = ωpy = 0, and
equation 23 becomes6,

(
∂2

∂z2
+ ω2

[
c−2(z)− p2

])
P̃ (~p, z, ω) = Ã(ω)δ(z). (24)

Transformed back into the (τ, p) domain by applying the 1
2π

∞∫
−∞

e−iωτ integration, equation 24 will

become a 1D wave equation with velocity
[
c−2(z)− p2

]−1/2
,

(
∂2

∂z2
+
[
c−2(z)− p2

] ∂2

∂τ2

)
P̂ (~p, z, τ) = Ã(τ)δ(z). (25)

In the above equation, P̂ (~p, z, τ) is the Radon transform of the wave�eld in equation 22 in the
space-time domain. From the derivations above, it is clear that a 3D wave propagation problem
can be transformed into a 1D one if the earth has no lateral variation. Since the geology in the
Kristin �eld is relatively �at, for our initial test, we assume it has no lateral variation and derive
the simplest deghosting algorithm in the next subsection7.

4.3 Source signature regularization

Within the velocity-only framework, let us consider a 3D wave equation,

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1
c2(x, y, z)

∂2

∂t2

)
P (~x, z, t) = A(t)δ(x)δ(y)δ(z), (26)

6In this case we use the symbol eP to denote the wave�eld in equations 23 and 24, although in the former case it
is a function of ~x, in the latter case it is a function of ~p.

7Obviously, more complete deghosting procedures without assuming the earth is 1D, such as Zhang (2007); Mayhan
and Weglein (2010); Mayhan et al. (2011), should be considered in the future for more complex geology.
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which can be transformed into a Helmholtz equation in the frequency domain,

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

ω2

c2(x, y, z)

)
P̃ (~x, z, ω) = Ã(ω)δ(x)δ(y)δ(z). (27)

The term source signature (wavelet) needs special attention. By wavelet we mean the one temporal
function on the right hand side (source term) of the wave equation that has no spatial depen-
dency, not the seismic event (or wave packet) propagating through the earth. To be more speci�c,
we consider the function A(t) in equation 26 as the wavelet8. In many situations, Ã(ω), or the
Fourier transform of A(t) is used in the context without any clari�cation since A(t) and Ã(ω) are
prepresentations of the same wavelet in di�erent domain.

With this de�nition, replacing the original wavelet Ã(ω) with a target wavelet B̃(ω) is very straight-
forward: if their ratio,

f̃(ω)
4
=
B̃(ω)

Ã(ω)
, (28)

is stable for all frequencies9, it can be multiplied to both sides of equation 27 to change the right
hand side to B̃(ω),

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

ω2

c2(x, y, z)

)
P̃ (~x, z, ω)f̃(ω) = Ã(ω)δ(x)δ(y)δ(z)f̃(ω)

= B̃(ω)δ(x)δ(y)δ(z).
(29)

And consequently the wavelet in the experiment had been changed to B̃(ω). The data we received
can be obtained by multiplying the original data with the factor f̃(ω). This operation is very simple
and can be quickly implemented in the frequency domain.

4.4 Regularization of source signature: Changing the source signature to a
Gaussian function

The inverse scatering series is written for an ideal source with a full bandwidth. The idea of
regularization was also proposed in Liu and Weglein (2010) to address another issue incured by a
bandlimited wavelet: the inconsistence between events from di�erent angles, and it was termed as
�source regularization� in that paper. In retrospect, we think it should be more speci�cally and
appropriately named �source regularization for angle inconsistence�.

8The meaning of the term �wavelet� is very important in this situation. The simple source signature regularization
method proposed here which is derived from the simple and convenient convolution relation in the wave equation,
may lead to very confusing conclusions if we have other convention of wavelet in mind.

9The wavelet eA(ω) may lack both low- and high-frequency information. We can choose the Gaussian wavelet or

its various derivatives with proper frequency range that decay much faster than eA(ω) for high frequency, and take

its derivatives to make it decay faster than eA(ω) in the low-frequency range.
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• In the limiting case, it becomes a Dirac δ-function, the ideal form of source in the original
derivation of the ISS.

• It has only one peak, is symmetrical and has good resolution.

• It is very smooth and well-suited for interpolation methods.

• A Ricker wavelet, or the second derivative of a Gaussian, is the most commonly encountered
wavelet in �eld data.

• For a Gaussian type wavelet, for example, the �rst derivative and second derivative (Ricker),
the low frequencies can be recovered through integration. Several examples can be found in
Liu (2006).

• The spectrum of a Gaussian function: e−ω
2/a2

decays much faster than the usually numeri-
cally obtained wavelet at high frequency. We can also take its nth order derivative, which is
equivalent to multiplying the spectrum by (iω)n in the frequency domain, to produce a decay
faster than that of the original wavelet at the low frequency range. This makes a Gaussian
type wavelet a good choice for source regularization detailed in equation 28.

The bene�ts of regularization are demonstrated in Figure 3 from the comparison between before
and after changing the wavelet to a Gaussian: After source regularization the events become much
more continuous, i.e., more favorable for the operations to kick out the density contribution10 from
the data.

5 Low-frequency analysis

The importance of low frequency is a very important issue in seismic acquisition, data processing,
and interpretation is well explained in the collective report �Low frequencies, their value and chal-
lenges�, distributed by the SEG/EAGE 2010 summer research workshop (15-20 August 2010) in
Snowbird, Utah. Missing low frequencies had been regarded as an insurmountable barrier for the
e�ectiveness of the seismic imaging subseries. The dependencies of each ISS task on the frequency
content of data is shown in Table 1, and the ISS imaging subseries in the current form shows more
dependency on low frequencies than both multiple removal subseries. A very important mission
of our Kristin experiment is to study the viability of the ISS imaging algorithm under the current
seismic acquisition conditions.

What we learned from this �eld data experiment is that the ability to handle missing low frequencies
to a large extent depends on the algorithms themselves, especially the amount of attention paid
to preserve the physics. We observed the lack of low frequency for a trace in the (~x, t) domain,
together with the presence of low frequency information in the (τ, p) domain, for both synthetic and
�eld data examples. This seemingly con�icting picture about low frequency is like the two di�erent
faces of the same coin, they appear di�erent but are two di�erent aspects of the same wave. The
solid movment of the target event towards its actual depth without using the actual velocity in

10Interested readers can confer Li and Weglein (2010); Wang et al. (2009); Liang et al. (2009) for further detail of
this step in ISS imaging.
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Dependence on temporal frequency content of the data Task speci�c subseries

None Free surface multiple removal

Very mild Internal multiple removal

Some Depth imaging

Table 1: The degree to which each ISS task speci�c subseries depends on the temporal frequency content
of the data.

this experiment demonstrates that the ISS imaging algorithms, together with the proper seismic
acquisition and processing methods, should not be stopped from further migrating re�ection events
without actual velocity velocity information by the issue of missing low frequencies.

5.1 The e�ects of source and receiver ghosts

The free surface (air/water boundary), with a re�ection coe�cient very close to −1, causes great
attenuation at low frequencies. Consequently deghosting has a signi�cant impact on boosting low
frequencies andi, very importantly, in retaining the critical low-frequency information.

In a 1D experiment our simple deghosting algorithm can be derived as follows:

• The re�ection coe�cient of the air/water surface is −1, and water velocity is c0;

• zs and zg are the depths of the source and receiver, respectively;

• and the recorded data (excluding direct wave) in the frequency domain is f̃(ω) if the free
surface is absent.

It is easy to �nd out that if the free surface is present, the recorded data will be11,

f̃(ω)
[
1− ei2ωzs/c0

] [
1− ei2ωzg/c0

]
.

Both factors the 1− ei2ωzs/c0 multiplier caused by the source ghost, and the 1− ei2ωzg/c0 multiplier
caused by the receiver ghost, vanish quickly towards zero frequency and are among the major reasons
for lack of low frequencies in the �eld data.

In this �eld data test, we only use the up-going wave�eld, the direct wave and receiver ghost had
been removed by up/down separation. We do not need to remove the second multiplier caused by
the receiver ghost. The deghosting operation upon the source ghost is done by dividing the factor
1− ei2ωzs/c0 from each trace in the angle domain, as described in equation 30:

11The e�ect of the free surface on the source can be described by a multiplicative factor −ei2zsω/c0 in the frequency
domain, or an image source with opposite polarity at distance 2zs from the original. The total contribution of the
original and image source can be described by a 1 − ei2zsω/c0 multiplicative factor in the frequency domain. The
same logic also applies for the e�ect of receiver ghost, and results in another 1− ei2zgω/c0 multiplier.
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Figure 2: Distribution of midpoint coordinates. Left: before CDP rebinning, right: after rebinning. The
size of the new CDP gather is three times of the old one.

B̃(ω) =
Ã(ω)

1− ei2ωzs/c0 , (30)

where Ã(ω) and B̃(ω) are the spectrum of the input and output for the deghosting operation,
respectively.

The e�ect of the source ghost on the data can be described as multiplying by a 1− ei2ωzs/c0 factor,
which is very similar to the ∂z (partial derivative over the depth) operation. Our current ISS imaging
subseries utlizes the box-like (very similar to impedance log) α1 to do the imaging. A geological
boundary between two boxes is much more di�cult for visualization than a spike boundary between
two empty regions. We often use the ∂z operation on α1 to convert the boxes into spikes and make
the imaging results more familiar to the general geophysicist. We take advantage of this fact to use
data without deghosting for showing spikelike events familiar to the general geophysical audience.

5.2 Critical steps in retaining low-frequency information

• High accuracy wavelet estimation

• Deghosting

• Source signature regularization
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Figure 3: Four di�erent 3D Radon transform demonstrate the bene�t of source regularization described in
equation 28. The smaller the value of the spatial sampling interval ∆x, the better the image.
Top: ∆x = 37.09 m provided by the original CDP, bottom ∆x = 12.32 m provided by the new
CDP after rebinning. Left: without regularization, right: after regularization. Note that the
deeper the depth, the more problematic the image.
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Figure 4: Input data for the Radon transform described in equation 18 with zs = 0 m, zg = 500 m, a = 80π.
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Figure 5: Radon transform comparison. Left: 2D Radon (see equation 20), right: 3D Radon (see equa-
tion 9). The input data is from Figure 4, the o�set variable is regarded as the x-coordinate in the

2D Radon, and ρ =
√
x2 + y2 in 3D Radon. Note that although in both cases the traveltimes are

identical for all angles, the waveform in the 3D Radon is perfectly uniform, whereas the shape of
the event in the 2D Radon has a noticeable change from 0◦ to 40◦.
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Figure 6: Comparison of amplitude spectra (left) of the input data at any �xed spatial location in Figure 4,
(center) of 2D Radon (the left panel of Figure 5), and (right) of the 3D Radon (the right panel
of Figure 5). Although the low frequency region is generally improved after the 2D Radon, the
amplitude at ω = 0 remains zero. In the 3D Radon, however, not only the improvement in low
frequency is much more signi�cant, also the amplitude at ω = 0 is fully recovered. In this example
we observed the lack of low frequency in the (~x, t) domain, and the presence of low frequency in
the (τ, p) domain.
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Figure 7: CMP gather used in the Radon transform. Left: without source regularization. Right: with
source regularization. The minimum and maximum o�sets in the gather are 35 and 5948 m,
respectively. The data in the right panel is obtained in the frequency domain by multiplying
the spectrum of the data on the left panel by the factor de�ned in equation 28 and displayed in
Figure 9. A more detailed analysis can be found in Figure 10 and 11.
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Figure 8: Comparison of amplitude spectra. Input data is from the trace with o�set xh = 141 m. Left:
before regularization, right: after regularization.
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Figure 9: Diagram of the �lter for source regularization in the frequency domain. Its technical detail can
be found in equation 28.
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Figure 10: Original wavelet (in red) and the target wavelet we wish to have (in green). The target wavelet

is − a2

2
√
π
e−a

2t2/4, where a = 80π. We adjust its maximum value to be the same as that of the

original wavelet for easy graphical comparison.
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Figure 11: Amplitude spectrum of original wavelet (in red) and the target wavelet we wish to have (in

green). We scale the spectrum of the target wavelet (e−ω
2/a2

, where a = 80π) to be of the same
magnitude as that of the original wavelet for easy comparison.

72



Kristin M-OSRP10

Figure 12: The extensive boxes appear after the deghosting operation.

• Su�cient sampling density in the measurement surface

6 Data processing �ow

We keep one principle in mind: Extract as much deterministic physics information as possible.
Maximize the predictive capability applying minimum adaptive measure. In this experiment the
only adaptive measure we used is the 0.34 factor multiplied to the data to undo the amplitude
alterations already existed in the data we received. The processing steps are documented in Table 2.

6.1 Processing range

Our processing is carried out for a CMP gather of the up-going wave�eld. We choose the middle
part of the section where maximum fold is reached. We consider the time above the �rst-order
water-bottom free surface multiple, i.e., above 1000 ms.

7 Conclusions

The subsurface event is further migrated towards its actual location and becomes �attened in the
angle gather using the ISS imaging algorithm without using the actual velocity �eld. The �attening
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Figure 13: The water bottom becomes �at after water speed migration.
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Figure 14: Subset of the linear image (α1) used in the ISS imaging subseries.

Step Comments

CDP reorganization Finished by Terenghi, see Figure 2.

Wavelet estimation Finished by Tang et. al.

t−2 gain Suggested by Terenghi

Wavelet analysis and regularization See Figure 3.

Radon transform See Figure 3.

Deghosting

Water Speed FK migration

Multiply the result by a 0.34 factor Emperical

Extract section to kick out non-velocity contribution

ISS image subseries Equation 2.34 from Liu (2006).

Table 2: Data processing �ow for the Kristin data set.
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Summary

① P1 WB

② P2

WB

③ IM1

④ P3 ④

④

120

Figure 15: Summary of the results of the initial ISS depth imaging tests on the very shallow, near bottom
section of the Kristin data.
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Figure 16: For the Kristin data test: Left panel shows water speed migration. Red line shows water speed
migration image for event 4. Right panel shows the ISS imaging result. Red line shows ISS
image for event 4.
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of the subsurface event does not take advantae of any curvature information. The moving capability
of the ISS imaging algorithm is not stopped by the lack of low frequencies in the �eld data. The
viability of the ISS imaging algorithm under current seismic acquisition is established.

Further work, extending the velocity-only framework in the simplest velocity only acoustic world
and taking advantage of curvature information of events and cross communication between angles,
for example, acoustic model with both velocity and density variation Li et al. (2008); Wang et al.
(2010); Liang et al. (2010), with density and lateral variation Chang et al. (2010), had been initiated
and provided us with more insights.
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Dealing with the wavelet aspect of the low frequency issue: A synthetic
example

X. Li, F. Liu and A. B. Weglein

Abstract

The �rst �eld data tests of inverse scattering series (ISS) depth imaging are encouraging. A
regularization scheme was applied to the Kristin data set to deal with the low frequency issue
in favor of imaging tests. In this report, the same regularization scheme is used on a synthetic
data example to demonstrate that it will allow the ISS imaging to be e�ective on �eld data.
The corresponding results show that the further steps to extend these tests to more complex
media are achievable.

1 Introduction

Depth imaging produces a structure map of re�ectors in the subsurface by processing seismic
re�ection data. Traditional migration requires an adequate velocity model which is di�cult to
achieve under some circumstances. Therefore, depth imaging through a complicated geologic
overburden has been an important and long standing challenge in exploration seismology.
In contrast, the ISS can achieve all seismic processing objectives (including depth imaging)
directly using only recorded data and reference medium which is generally considered as the
original unperturbed medium.

An imaging subseries of the inverse series has been identi�ed and isolated, which corresponds
to a direct multi-dimensional inversion procedure. Imaging algorithms with di�erent degrees of
imaging capture and capability are developed �rst for earth models with only variable velocity.
Detailed discussions of the imaging algorithm can be found in Weglein et al. (2000, 2002,
2003); discussions of leading order imaging series (LOIS) in Shaw et al. (2003a,b); Innanen
(2003); discussions of higher order imaging series (HOIS) in Liu (2006). Later, Weglein
(2009) extended single parameter imaging algorithm to multi-parameter case. Early tests on
multi-parameter imaging results (Li et al., 2009; Jiang et al., 2009; Li and Weglein, 2010)
were successful and encouraging. However, the e�ectiveness of imaging algorithms greatly
depends on low frequency information in the data. In Shaw (2005), the impact of missing low
frequencies on the LOIS was examined, showing that more e�ectiveness is achieved when lower
frequency information is present. So, this is to say that the success of ISS imaging algorithms
not only rely on their own capability, but also are a�ected by low frequency information.
Failing to deal with the low frequency issue will stop ISS imaging algorithms from delivering
their promise in locating re�ectors, even though larger degree of capture and capability is
achieved.

The main purpose of this report is to show that a regularization scheme is working in �eld
data tests (Liu et al., 2011). A synthetic data example is provided to show more details.
ISS imaging results for data with low frequency information, diminished low frequency infor-
mation, and regularized low frequency information are shown to demonstrate that the low
frequency issue has been addressed in Kristin data.
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2 Preparing 1D data

This section brie�y introduce how to prepare the data tested in this report. For a detailed
derivation, please refer to Liu and Weglein (2010). A layered model with two re�ectors located
at z1 and z2 is considered. Figure 1 shows the velocity and density pro�le, and Figure 2 shows
the corresponding data in (τ, p) domain.

Examining a Gaussian type wavelet as follows:

ω(t) =
∂

∂t

ae−a
2t2/4

2
√
π

= − a3t

4
√
π
e−a

2t2/4. (1)

So the direct wave in (τ, p) domain can be written as:

P0(p, z, τ) =
∫ ∞
−∞

G0(p, z, t′)ω(τ − t′)dt′ = − ρ0

2
√
c−2

0 − p2

∫ τ−|z|
√
c−2
0 −p2

−∞
ω(t′)dt′. (2)

In this speci�c case, the wavelet has the form of equation 1, so P0 is

P0(p, z, τ) = − c0ρ0a

4 cos(θ)
√
π
e−

a2

4
(τ−|z|

√
c−2
0 −p2)2 . (3)

Then the re�ected data from this layered model is (for displaying purpose, the polarity of the
data is the opposite of what is in the following formula):

D̂(τ, p) = R0(θ)P0(τ − t1) +R′1(θ)P0(τ − t2). (4)

3 Numerical examples

Data prepared from the last section are used in this section for further imaging tests. In
Figure 3 the original data has low frequency information. Water speed migration and ISS
imaging results for this data are shown in Figure 6. Because the location of the re�ectors are
the most important information, the section from 400m to 1100m is enlarged to display the
details of the re�ectors, and the same section is plotted in the following �gures. Then a sine
squared taper is applied to the original data from 0Hz to 12Hz. Figure 4 shows the amplitude
spectrum for this altered data. It indicates that the low frequency information has been greatly
damped. Corresponding water speed migration and ISS imaging result are shown in Figure 7.
The mis-located second re�ector almost does not move when applying ISS imaging. Next,
start from the data with diminished low frequency information, a regularization scheme is
applied, which changes the original wavelet to Gaussian type wavelet.

D′(ω, p) = D(ω, p)
G(ω)
A(ω)

, (5)

where D(ω, p) represents the low frequency diminished data, A(ω) is the corresponding
wavelet, D′(ω, p) represents the regularized data, and G(ω) is the Gaussian type wavelet.

83



Kristin M-OSRP10

3

3

00
/0.1       1500m/s cmgc == ρ

mz 500
1

=

mz 1000
2

=

3

11
/0.1       1700m/s cmgc == ρ

3

22
/0.1       1900m/s cmgc == ρ

Figure 1: Acoustic model with only velocity varia-
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Figure 2: Data after radon transform. Only primary
events are shown here.

Figure 5 shows the amplitude spectrum for data after regularization. Figure 8 shows the
water speed migration on the left and ISS imaging result on the right. Compared with ideal
ISS imaging result on the right of Figure 6, it indicates that with regularization in the data,
ISS imaging can produce a �at image gather at the correct location.

4 Conclusions

In this report, the band limited issue for ISS depth imaging algorithm has been studied. It is
shown that, with the regularization for low frequency information, ISS imaging algorithm can
successfully deal with the low frequency issue. Compared with this synthetic example, the
early tests on Kristin data set (Liu et al., 2011) demonstrate that this regularization method
allows the ISS imaging algorithms to be e�ective on �eld data. These tests also indicate that
With the most serious practical limitation been addressed, the further steps to extend these
tests to variable density and velocity acoustic and elastic media are achievable.
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Figure 3: Amplitude spectrum for original data with low frequency information.
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Figure 4: Amplitude spectrum for data altered by a sine squared taper up to 12Hz.
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is the ISS ideal imaging result. The red lines are the actual depth of the two re�ectors.
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Figure 7: On the left is the water speed migration for data with a sine squared taper applied up to 12Hz.
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Figure 8: On the left shows the water speed migration for data being regularized. On the right is the
corresponding ISS imaging result. The red lines are the actual depth of the two re�ectors. With
the regularization applied, ISS successfully correct the move-out and place the re�ectors to the
right location.
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Discussion of the impact of shear waves on the model type assumption for ISS
depth imaging: how far below the water bottom might we expect value for a
velocity and density varying acoustic ISS imaging algorithm

H. Liang, A. B. Weglein and X. Li, M-OSRP, University of Houston

Abstract

Accurately imaging at depth and identifying targets in the subsurface are both high priority
and serious technical challenges for the petroleum industry. The current inverse scattering series
(ISS) approaches for both of the tasks depend on the model type assumption (e.g., acoustic,
elastic, isotropic, anisotropic), which is de�ned by the chosen set of parameters to be inverted
for. Acoustic medium is characterized by P-wave velocity and density, whereas elastic medium
such as the water bottom and below is de�ned by elastic parameters (e.g., P-wave and S-wave
velocity, density). For ISS depth imaging without subsurface information, the more number of
parameters are chosen to describe the medium, the more issues have to be addressed. Thus, in
this report we evaluate the applicability domain of ISS acoustic imaging for elastic medium to
investigate the value of a velocity and density varying acoustic ISS imaging algorithm below the
water bottom. Based on a series of numerical tests, we conclude that the ISS acoustic imaging
is suitable for elastic medium when both the density and shear modulus variations are small
compared to the primary wave velocity change, or when the value of shear wave velocity is small
enough.

1 Introduction

The objective of seismic processing is to locate and identify the targets in the subsurface
from the measured data. The inverse scattering series could perform all the tasks associated
with inversion (free surface multiple removal, internal multiple attenuation, depth imaging
and parameter estimation) directly without requiring subsurface information (Weglein et al.,
2003). Among all the tasks, both the current ISS depth imaging and parameter estimation
algorithms are model type dependent. For these two approaches it is important to assume an
adequate model type in the algorithms (Liang et al., 2010). Here, an adequate model type
means a minimally complicated model adequate to reach E&P goals, but not too simple to be
harmful, nor too complicated to be more than necessary to predict drilling decisions (Weglein
et al., 2010).

Within the overall inverse scattering series a certain subseries performs only one speci�c task
and acts as though no other tasks existed. By collecting di�erent imaging subseries and assum-
ing di�erent model types di�erent imaging algorithms are obtained. For a simplest acoustic
model with only velocity variation, the leading order imaging subseries (LOIS) (Shaw et al.,
2002) and extended higher order imaging subseries (HOIS) (Liu, 2006) can achieve the imag-
ing objective to a certain degree. However, these algorithms would fail if the medium has
large density variations. To accommodate both velocity change and density change a multi-
parameter imaging conjecture was proposed by Weglein in 2007 which can exclude re�ections
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due to only density change. The leading order closed form imaging conjecture was validated
by Jiang and Weglein (2008) and an extended higher order closed form was tested in the 2008
M-OSRP annual reports (Li et al., 2009; Jiang and Weglein, 2009). This imaging conjecture
has also been generalized to accommodate the 1D three-parameter elastic earth model with
P wave velocity, S wave velocity, and density all varying (Jiang and Weglein, 2009; Li et al.,
2010; Liang et al., 2010).

For ISS depth imaging without velocity the challenges have to be addressed are: the size
of velocity contrast, the duration of the contrast, the number of parameters and dimensions
chosen to describe the medium (Wang et al., 2010). The two-parameter acoustic imaging
conjecture needs the combination of data at two di�erent incident angles (Jiang and Weglein,
2009), whereas the three-parameter elastic imaging conjecture is more complicated and re-
quires the data combination at three di�erent angles. The goal of this study is to evaluate
the circumstances that ISS acoustic imaging conjecture is applicable for elastic medium, and
the study may give a hint about when the acoustic imaging conjecture could be used below
the water bottom.

2 The theory

We start from the inverse scattering theory (Weglein et al., 2003)

D =[G0V1G0]ms (1)

0 =[G0V2G0]ms + [G0V1G0V1G0]ms (2)

0 =[G0V3G0]ms + [G0V1G0V2G0]ms
+ [G0V2G0V1G0]ms + [G0V1G0V1G0V1G0]ms (3)

...

where D is the measured data, G0 is Green's function in the reference medium, V is the
perturbation operator which characterizes the properties of actual medium, and Vn is the
portion of V which is nth order in D. The inverse scattering series provides a direct method
to solve the perturbation operator V order by order using only D and G0.

2.1 Linear parameter estimation

From equation 1 we can obtain the linear estimation of the medium properties using only D
and G0. For 1D two-parameter acoustic medium with both density and velocity changes, the
linear term of the perturbation operator, i.e., V1, has the following form:

V1(z,5) =
ω2α1(z)
K0

+
1
ρ0
β1(z)

∂2

∂x2
+

1
ρ0

∂

∂z
β1(z)

∂

∂z
(4)

where K = cρ2, c is P wave velocity and ρ is density. The two parameters to be inverted
are α = 1 −K/K0 and β = 1 − ρ/ρ0, where the subscript 0 represents the quantities in the
reference medium. The corresponding linear terms are α1 and β1. Assuming the source and
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receiver at depth zero and substituting equation 4 into equation 1, we can obtain the linear
equation in frequency domain:

D̃(qg, θ, zg, zs) = −ρ0

4

[
1

cos2 θ
α̃1(−2qg) + (1− tan2 θ)β̃1(−2qg)

]
(5)

where the subscripts s and g denote source and receiver quantities respectively, θ is the
incidence angle, and qg is the receiver vertical wave number given by qg = ω cos θ/c. The
linear estimation of the medium parameters α1 and β1 can be solved by choosing two di�erent
angles. We can also obtain the linear estimation of the relative change in P-wave velocity
(Zhang, 2006): (4c

c

)
1

=
1
2

(α1 − β1) (6)

For 1D three-parameter elastic medium the perturbation is given in the PS domain (Weglein
et al., 1997). The three parameters to be inverted are: aρ = ρ/ρ0 − 1 , aγ = γ/γ0 − 1 and
aµ = µ/µ0 − 1 , where ρ denotes density, α is P-wave velocity, β is S-wave velocity, γ is bulk
modulus given by γ = ρα2, and µ is shear modulus given by µ = ρβ2. We consider only PP
data in this report. Assuming source and receiver depths are zero, we can obtain the equation
that relates the linear components of the three elastic parameters to PP data (Zhang and
Weglein, 2006):

D̃PP (νg, θ) = −1
4

(1− tan2 θ)ã(1)
ρ (−2νg)− 1

4
(1 + tan2 θ)ã(1)

γ (−2νg) +
2β2

0

α2
0

sin2 θã(1)
µ (−2νg) (7)

where θ is the incident angle and νg is the receiver vertical wave number given by νg =
ω cos θ/α0. The linear estimation of the medium parameters a

(1)
ρ , a

(1)
γ , and a

(1)
µ can be solved

by choosing three di�erent angles. We can also obtain the linear estimation of the relative
change in P-wave velocity (Zhang, 2006):(4c

c

)
1

=
1
2

(a(1)
γ − a(1)

ρ ) (8)

Equation 6 and 8 will be used respectively as input to the acoustic and elastic multiparameter
imaging conjecture in the next section.

2.2 Multiparameter imaging conjecture

There are di�erent imaging subseries captured within the overall inverse scattering series
with di�erent degrees of capability. For 1D one-parameter acoustic medium with only P wave
velocity change, the closed form of the higher order imaging series (Liu, 2006) is:

αHOIS(z +
1
2

∫ z

−∞

α1(z′)
cos2 θ − 0.25α1(z′)

dz′, θ) = α1(z, θ) (9)

where α1 is the linear estimation of P wave velocity change.
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By comparing the imaging-only terms in the �rst nonlinear equation of the inverse scatter-
ing series for one-parameter and two-parameter acoustic case (Jiang and Weglein, 2008) we
substitute α1 in equation 9 with α1 − β1, and get the conjectured imaging algorithm for 1D
two-parameter acoustic medium:

DHOIS(z +
1
2

∫ ∞
−∞

α1(z′)− β1(z′)
cos2 θ − 0.25(α1(z′)− β1(z′))

dz′, θ) = D(z, θ) (10)

Similarly, substituting α1 with a
(1)
γ − a(1)

ρ in equation 9 we can obtain the imaging conjecture
for 1D three-parameter elastic medium:

DHOIS(z +
1
2

∫ ∞
−∞

a
(1)
γ (z′)− a(1)

ρ (z′)

cos2 θ − 0.25(a(1)
γ (z′)− a(1)

ρ (z′))
dz′, θ) = DPP (z, θ) (11)

The imaging conjecture has a multiparameter front end, which is α1−β1 in the acoustic case

and a
(1)
γ −a(1)

ρ in the elastic case. They are prepared by inverting the linear equation of inverse
scattering series (equation 5 and equation 7), respectively, and imaged as a composite form
by the corresponding imaging conjecture. The imaging front ends are linear combinations of
data, and able to exclude re�ections due to density change only (Li et al., 2009).

2 2 2, ,α β ρ

0 0 0, ,α β ρ

1 1 1, ,α β ρ

Figure 1: A 1D three-layer elastic model with P-wave velocity, S-wave velocity and density.

3 Numerical tests

Since it is di�cult to evaluate the exact valid conditions under which the acoustic imaging
would give reasonable results for the elastic medium in theory, we study the problem through
a series of numerical tests.
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3.1 Analytic data preparation

A three-layer elastic model shown in Figure 1 is used to generate the data. We consider only
two primaries re�ected from the re�ectors and assume all other events (ghosts, free surface
multiples, and internal multiples) have been removed. For this three-layer elastic model, the
analytic data in the frequency domain can be written as (Weglein et al., 1986):

D̃PP (νg, θ) = RPP01 (θ)
e2iνga

4πiνg
+ R̂PP12

e2iνga + e2iqg(b−a)

4πiνg
(12)

where a and b are the exact depths of the two re�ectors, νg and qg are vertical wavenumbers
for P wave in the �rst two layers, and θ is the incident angle. RPP01 and RPP12 are the re�ection
coe�cients at the �rst and second re�ectors, TPP01 and TPP10 are the transmission coe�cients,
and R̂PP12 = TPP01 RPP12 T

PP
10 . The re�ection and transmission coe�cients can be calculated by

the Zoeppritz equation. Fourier transforming equation 12 over 2νg, we have:

DPP (z, θ) = RPP01 (θ)H(z − a) + R̂PP12 H(z − b′) (13)

This is the linear imaging result using the velocity in the �rst layer as the reference velocity,
which equals to constant velocity FK migration. Since the reference velocity equals to the
actual velocity above the �rst re�ector, the �rst re�ector is located correctly by the linear
imaging. For the second re�ector the depth is mislocated at a pseudo depth b′, where b′(θ) =
a+ (b− a)qg/νg (Jiang and Weglein, 2009).

Figure 2: Plane P wave striking a planar interface between two elastic media

3.2 Numerical results

The ISS acoustic and elastic imaging conjectures are tested using the same data modeled
in the elastic medium. With the elastic imaging result as a reference, we will evaluate the
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applicability of acoustic imaging for elastic data under di�erent conditions. The elastic imag-
ing conjecture would allow P-wave velocity, S-wave velocity and density to all vary, whereas
the acoustic imaging conjecture would treat the data as though only P-wave velocity and
density varied. Since the same data sets are used by di�erent algorithms, we will investigate
the numerical results by examining the modeled data. The imaging conjecture only makes
use of the information above the re�ector to locate it. Thus, we will only consider the wave
scattering across the �rst re�ector to investigate the locating results of the second re�ector.

As shown in Figure 2, a plane P wave striking a planar interface between two elastic medium
would give rise to four plane waves: transmitted P wave, re�ected P wave, transmitted S
wave and re�ected S wave. The amplitudes for the four plan waves are: Tpp, Rpp, Tps, Rps.
In the analytic data the elastic re�ection and transmission coe�cients are calculated using
Zoeppritz equation (Sheri� and Geldart, 1994). Following Keys (1989), we examine the two
special conditions that would cause the elastic re�ection and transmission coe�cients reduce
to the acoustic case. The �rst case is when both the density and shear modulus change is zero
the elastic P-wave re�ection and transmission coe�cients would reduce to the corresponding
acoustic coe�cients, and the S-wave re�ection and transmission coe�cients would be zero
(see Appendix A). Under this circumstance the data is actually acoustic. This indicates that
if both the density and shear modulus changes are small the elastic medium would be act like
an acoustic medium.
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Figure 3: Imaging results for small density change and zero shear modulus changes. Left panel is constant
velocity migration, middle panel is acoustic imaging, right panel is elastic imaging, and the yellow
line indicates the correct depth of the second re�ector. Parameters across the �rst re�ector are:
aρ = 0.02,4vp/vp0 = 0.1, aµ=0, ρ0=1.0g/cm

3, vp0=1500m/s, vs0=800m/s.

In the data model of Figure 3 density variation is small and shear modulus change is zero
above the second re�ector, so we can speculate that the P-wave re�ection coe�cient across
the �rst re�ector would be close to the acoustic re�ection coe�cient. This is con�rmed in
Figure 4, which shows the elastic and acoustic re�ection coe�cients are very close, especially
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Figure 4: Comparison of elastic and acoustic re�ection coe�cients as a function of incident angle. Rpp
represents the elastic re�ection coe�cient across the �rst re�ector in the data model of Figure
3. R represents the re�ection coe�cient for the acoustic medium which has the same P-wave
velocity and density.

at angles below 25 degrees. Next we examine all the re�ection and transmission coe�cients
across the �rst re�ector. Figure 5 shows the corresponding amplitudes for the four plan waves:
Tpp, Rpp, Tps, Rps. The result shows that the amplitudes of the converted waves (P-S re�ected
wave and P-S transmitted wave) are extremely small compared to the primary waves (P-P
re�ected wave and P-P transmitted wave). The above results indicate data above the second
re�ector in the data model of Figure 3 is like acoustic. This explains why the acoustic imaging
is better at locating the deeper re�ector than the elastic imaging conjecture in �gure 3.

Then we examine the impact of shear modulus variation on the imaging results when the
density variation is small. In Figures 6.a and 6.b the value and the changes of both density
and P-wave velocity are all the same across the �rst re�ector, and the only di�erence is the
shear modulus change. In Figure 6.a the shear modulus change is about half of the P-wave
velocity change, and the acoustic imaging result is almost as good as the elastic imaging result;
in Figure 6.b, the shear modulus change is nearly equal to the P-wave velocity change, and
the acoustic imaging result is worse than the elastic imaging result. This con�rms that when
the density variation and shear modulus change are small compared to the P-wave velocity
change the acoustic imaging conjecture could well locate the re�ector in the elastic medium.

The second case is when the shear wave velocities are zero the medium is actually acoustic.
Under this circumstance, the elastic P-wave re�ection and transmission coe�cients would
reduce to the corresponding acoustic coe�cients, and the S-wave re�ection and transmission
coe�cients would be zero (see Appendix B). This indicates if the shear wave velocities in
the elastic medium are small enough the data generated in the elastic medium would be like
acoustic. Next we examine the impact of the shear wave velocity on the imaging results under
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Figure 5: Amplitudes of scattered waves across the �rst re�ector in the data model of Figure 3. (a)
Transmitted P wave. (b) Re�ected P wave. (c) Transmitted S wave. (d) Re�ected S wave.

di�erent conditions.

First consider the case when the shear modulus variation is large. In Figure 7.a and 7.b the
value and the changes of both density and P-wave velocity across the �rst re�ector, as well as
the shear modulus variation, are all the same. The only di�erence is the value of shear wave
velocities: in Figure 7.a, vs0 = 800m/s, and vs1 = 830m/s; in Figure 7.b, vs0 = 400m/s, and
vs1 = 415m/s. According to the previous example large shear modulus variation in Figure 7.a
causes the acoustic imaging fail to locate the deeper re�ector, whereas in Figure 7.b acoustic
imaging well locate the re�ectors in the elastic medium since small shear wave velocities make
the elastic data like acoustic.

Then consider the case when the density variation is large. Similar to the previous example,
in Figure 8.a and 8.b the only di�erence is the value of shear wave velocities: in �gure 8.a,
vs0 = 1600m/s, and vs1 = 1300m/s; in Figure 8.b, vs0 = 400m/s, and vs1 = 325m/s. The
acoustic imaging in Figure 8.a fails to image the elastic medium due to large density variation,
whereas in Figure 8.b acoustic imaging well locate the re�ectors in elastic medium since small
shear wave velocities makes the elastic data like acoustic.
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Figure 6: Comparison of imaging results for di�erent shear modulus changes when density change is small.
In both (a) and (b) left panel is constant velocity migration, middle panel is acoustic imaging,
right panel is elastic imaging, and the yellow line indicates the correct depth of the second
re�ector. Parameters across the �rst re�ector in two �gures are the same except shear modulus
change: aρ = 0.02,4vp/vp0 = 0.1, ρ0=1.0g/cm

3, vp0=1500m/s, vs0=800m/s. (a) Case with
small shear modulus change: aµ = 0.046, (b) Case with large shear modulus change: aµ = 0.098.
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Figure 7: Comparison of imaging results for di�erent shear wave velocities when shear modulus change
is large. In both (a) and (b) left panel is constant velocity migration, middle panel is acoustic
imaging, right panel is elastic imaging, and the yellow line indicates the correct depth of the
second re�ector. Parameters across the �rst re�ector in two �gures are the same except shear
wave velocities: aρ = 0.02,4vp/vp0 = 0.1, aµ = 0.098, ρ0=1.0g/cm

3, vp0=1500m/s. (a) Case
with large shear wave velocities: vs0=800m/s, and vs1=830m/s. (b) Case with small shear wave
velocities: vs0=400m/s, and vs1=415m/s.

4 Conclusions

We have studied the applicability domain of inverse scattering series acoustic imaging con-
jecture for elastic media. Based on the performed numerical tests we conclude that if both
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Figure 8: Comparison of imaging results for di�erent shear wave velocities when density change is large. In
both (a) and (b) left panel is constant velocity migration, middle panel is acoustic imaging, right
panel is elastic imaging, and the yellow line indicates the correct depth of the second re�ector.
Parameters across the �rst re�ector in two �gures are the same except Shear wave velocities:
aρ = 0.6,4vp/vp0 = 0.1, aµ = 0.056, ρ0=1.0g/cm

3, vp0=3000m/s. (a) Case with large shear
wave velocities: vs0=1600m/s, and vs1=1300m/s. (b) Case with small shear wave velocities:
vs0=400m/s, and vs1=325m/s.

the shear modulus variation and density variation are small enough compared to the P-wave
velocity variation, or if the shear wave velocity is small enough compared to the P-wave ve-

100



Imaging M-OSRP10

locity, the elastic data would be like acoustic. Under these circumstances, the ISS acoustic
imaging could give reasonable results for the elastic data. Since the elastic parameters are
coupled in the data, it is di�cult to provide the exact conditions that the acoustic imaging
conjecture is applicable for elastic data. However, the study could give a hint about how far
below the water bottom might we expect value for a velocity and density varying acoustic ISS
imaging algorithm by checking the data properties.
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A Appendix

Non-normal incidence of P-plane wave on a horizontal interface between two elastic solids
would give rise to four plane waves: re�ected P-wave (Rpp), re�ected S-wave (Rps), transmit-
ted P-wave (Tpp) and transmitted S-wave (Tps). The amplitudes of these plane waves can be
given by the boundary conditions that the normal and tangential components of stress and
displacement must be continuous. From the continuity equations, we can derive the re�ection
and transmission coe�cients (see Sheri� and Geldart (1994), Zhang (2006)).

The P-wave re�ection coe�cient is given by Rpp = NRpp/D, where

NRpp = −(1 + 2kx2)2b
√

1− c2x2
√

1− d2x2 − (1− a+ 2kx2)2bcdx2

+ (a− 2kx2)2cd
√

1− x2
√

1− b2x2

+ 4k2x2
√

1− x2
√

1− b2x2
√

1− c2x2
√

1− d2x2

− ad
√

1− b2x2
√

1− c2x2 + abc
√

1− x2
√

1− d2x2

D = (1 + 2kx2)2b
√

1− c2x2
√

1− d2x2 + (1− a+ 2kx2)2bcdx2

+ (a− 2kx2)2cd
√

1− x2
√

1− b2x2

+ 4k2x2
√

1− x2
√

1− b2x2
√

1− c2x2
√

1− d2x2
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+ ad
√

1− b2x2
√

1− c2x2 + abc
√

1− x2
√

1− d2x2

The variable x is sin(θ), where θ is the incident angle. The parameters a, b, c, d, k represent
the ratios of various elastic parameters: a = ρ2/ρ1, b = β1/α1, c = α2/α1, d = β2/α1, k =
ad2 − b2, where ρi, αi, βi are the density, P-wave velocity, S-wave velocity of medium i,
respectively. If we set ρ1 = ρ2, and β1 = β2, we can obtain a = 1, b = d, k = 0. Then the
P-wave re�ection coe�cient would reduce to

Rpp =
c
√

1− x2 −√1− c2x2

c
√

1− x2 +
√

1− c2x2

which equals to the acoustic re�ection coe�cient. Similarly, we can prove that the P-wave
transmission coe�cient would reduce to the acoustic transmission coe�cient.

The S-wave re�ection coe�cient is given by Rps = NRps/D, where

NRps = −4kx(1 + 2kx2)
√

1− x2
√

1− c2x2
√

1− d2x2 − 2cdx(2kx2 − a)(2kx2 − a+ 1)
√

1− x2

If we set ρ1 = ρ2, and β1 = β2, then NRps = 0, and Rps = 0. Similarly, we can prove that
Tps = 0.

B Appendix

Consider a two-layer elastic medium as in Appendix A. Following Keys (1989), we �rst set the
shear wave velocity in the �rst layer equal to zero, which would lead to b = 0, and k = ad2.
In this case the �rst layer reduces to an acoustic medium, the Zoeppritz equation gives the
correct P-wave re�ection coe�cient for a �uid-solid interface:

Rpp =
(a− 2ad2x2)2cd

√
1− x2 + 4a2d4x2

√
1− x2

√
1− c2x2

√
1− d2x2 − ad√1− c2x2

(a− 2ad2x2)2cd
√

1− x2 + 4a2d4x2
√

1− x2
√

1− c2x2
√

1− d2x2 + ad
√

1− c2x2

=
(1− 2d2x2)ac

√
1− x2 + 4ad3x2

√
1− x2

√
1− c2x2

√
1− d2x2 −√1− c2x2

(1− 2d2x2)ac
√

1− x2 + 4ad3x2
√

1− x2
√

1− c2x2
√

1− d2x2 +
√

1− c2x2

Then we set the shear wave velocity in the second layer also equal to zero, which leads to
d = 0, and k = 0. The P-wave re�ection coe�cient reduces to the following form:

Rpp =
ac
√

1− x2 −√1− c2x2

ac
√

1− x2 +
√

1− c2x2

which equals to the acoustic re�ection coe�cient. Similarly, we can prove that the P-wave
transmission coe�cient would reduce to the acoustic transmission coe�cient. With the �rst
solid layer replaced by a �uid layer, the Zoeppritz equation gives the nonphysical shear wave
re�ection coe�cient:

Rps =
−4ad2x(1 + 2ad2x2)

√
1− x2

√
1− c2x2

√
1− d2x2 − 2cdx(2ad2x2 − a)(2ad2x2 − a+ 1)

√
1− x2

(a− 2ad2x2)2cd
√

1− x2 + 4a2d4x2
√

1− x2
√

1− c2x2
√

1− d2x2 + ad
√

1− c2x2
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=
−4dx(1 + 2ad2x2)

√
1− x2

√
1− c2x2

√
1− d2x2 − 2cx(2d2x2 − 1)(2ad2x2 − a+ 1)

√
1− x2

(1− 2d2x2)2ac
√

1− x2 + 4a2d3x2
√

1− x2
√

1− c2x2
√

1− d2x2 +
√

1− c2x2

If we set the shear wave velocity in the second layer also equal to zero, which leads to d = 0,
and k = 0. Then the S-wave re�ection coe�cient would reduce to the following form:

Rps =
−4dx(1 + 2ad2x2)

√
1− x2

√
1− c2x2

√
1− d2x2 − 2cx(2d2x2 − 1)(2ad2x2 − a+ 1)

√
1− x2

(1− 2d2x2)2ac
√

1− x2 + 4a2d3x2
√

1− x2
√

1− c2x2
√

1− d2x2 +
√

1− c2x2

= 0

Similarly, we can prove the the S-wave transmission coe�cient would also equal to zero.

104



An investigation of ISS imaging algorithms beyond HOIS, to begin to address

exclusively laterally varying imaging challenges

Z. Wang and A. B. Weglein

Abstract

The inverse scattering series (ISS) is wave-equation based and has the potential capability to

image a re�ector with any dipping angle. The leading-order imaging subseries in closed form

(LOIS) and the higher-order imaging subseries in closed form (HOIS) are both subseries of ISS.

Many terms related to lateral variations are not captured by them; certain degree of lateral

variation can be accommodated.

We tested two ISS direct-depth imaging algorithms beyond HOIS to accommodate larger

lateral variations in the medium. The �rst is the gradient HOIS which migrates along the

gradient of every point in the water-speed Stolt migration result. The second is the HOIS plus

lateral exclusive (HOISPLE) which migrates every point of the water-speed Stolt migration

result into a semicircle and the interference over all angles constructs the desired imaging.

1 Introduction

In exploration seismology, a man-made source of energy on or near the surface of the earth
generates waves that propagate into the subsurface. The waves travel through the earth with
a �nite velocity, which is governed by the material properties of the earth. When the waves
reach a rock layer with a di�erent velocity, a portion of the energy is re�ected back towards
the surface. Finally, the re�ected waves arrive at the measurement surface and are recorded
by geophones. After many preprocessing steps, a process called seismic imaging is applied, by
which seismic events are relocated to where the event occured in the subsurface rather than
the location where it was recorded at the measurement surface.

In conventional seismic imaging, the recorded arrival times of the events and a velocity map
are used to calculate the locations of the re�ectors. In this process, an accurate velocity map,
which is generated from a preprocessing step called velocity analysis, is a key factor for the
reliability of the imaging result and often is a big challenge, especially when the medium is
complex.

The ISS provides a new vision and level of seismic capability and e�ectiveness. That promise
has already been realized for the removal of free surface and internal multiples, while big
progress is being made for direct-depth imaging.
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In an earth model that allows only variations in velocity, two major closed forms of the
inverse scattering imaging subseries with di�erent degrees of imaging capture and capability
have been identi�ed and tested in M-OSRP: LOIS (Shaw et al., 2004):

αLOIS(x, z) = α1

(
x, z − 1

2

∫ z

−∞
α1(x, u)du

)
(1)

and HOIS (Liu, 2006; Wang et al., 2009):

αHOIS
(
x, z +

1
2

∫ z

−∞
du

α1(x, u)
1− 0.25α1(x, u)

)
= α1(x, z). (2)

Both of these forms are missing many terms, especially those related to lateral variations, and
can accomodate only certain degrees of lateral variation.

In this paper, two ISS direct-depth imaging algorithms beyond HOIS (to accommodate larger
lateral variations in the medium) are investigated. The gradient HOIS direct-depth imaging
algorithm, which utilizes the gradient of α1 at each location as the direction for the migration,
is discussed and tested. Its results show that dipping re�ectors are better located than in the
HOIS, while the shadow zones beneath the dipping-re�ectors are out of order, because of the
disorder of the gradient in those areas (caused by di�raction energy). Then we investigate
the HOISPLE direct-depth imaging algorithm. Instead of migrating in a speci�ed direction,
it migrates in all directions and the results interfere for di�erent directions. The algorithm
attenuates the energy except in the desired direction, which is the same as the one calculated
from the gradient. HOISPLE testing results show improvements for dipping re�ectors in both
the fault model and the salt model.

2 ISS direct-depth imaging algorithm

Scattering theory is a form of perturbation analysis. It considers the original unperturbed
medium as the reference medium and the di�erence between the actual and reference media
as the perturbation. The corresponding wave�elds are the reference wave�eld and the scat-
tered wave�eld. Based on the reference medium (already chosen) and the reference wave�eld
(calculated from the wave equation using the reference velocity), forward scatting constructs
the scattered wave�eld from the perturbation, while inverse scattering reconstructs the per-
turbation from the scattered wave�eld.

The Lippman-Schwinger equation is the fundamental equation of scattering theory,

Ψ = G0 +G0VΨ (3)

where Ψ is the actual wave�eld, G0 is the reference wave�eld and V is the perturbation
operator. Substituting equation 3 into itself generates the forward scattering series

Ψs = Ψ−G0 = G0V G0 +G0V G0V G0 + · · · (4)

where Ψs is the scattered wave�eld.
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In the inverse scattering series, the perturbation is expanded as a series

V = V1 + V2 + V3 + · · · (5)

where Vn is the portion of V that is nth order in Ψs. The series of Vn resides in a series of
equations (Weglein et al., 2003),

(Ψs)m = (G0V1G0)m, (6)

0 = (G0V2G0)m + (G0V1G0V1G0)m, (7)

0 = (G0V3G0)m + (G0V2G0V1G0)m + (G0V1G0V2G0)m + (G0V1G0V1G0V1G0)m, (8)

0 = (G0VnG0)m + (G0V1G0Vn−1G0)m + · · ·+ (G0V1G0V1G0V1 · · ·G0V1G0)m. (9)

V1 can be solved using equation 6 in terms of the reference wave�eld G0 and the scattered
wave�eld Ψs, and each Vn(n ≥ 2) could be solved from the corresponding equation in terms
of the reference wave�eld G0 and all Vi(i < n). Thus the total perturbation V =

∑∞
n=1 Vn

is an explicit direct inversion formalism. Each Vn consists of several terms, some of which
are related only to correcting the spatial locations of the re�ectors. We call them imaging
subseries. Capturing the imaging-only subseries (Weglein et al., 2002; Shaw et al., 2004) is
less ambitious but more practical than capturing the whole series.

The imaging-only subseries still consists of an in�nite number of terms, and adding them
up requires large amounts of calculations and computations. Pulling out a subseries and
compacting them into a closed form saves massive computations and makes the subseries
more physically meaningful. Until now, only LOIS and HOIS for a one-parameter (only
velocity changing) acoustic medium, and the imaging conjecture (Weglein, 2008, pp. 1-8)
and beyond conjecture (Wang et al., 2009) for a multi-parameter acoustic medium have been
provided and tested in M-OSRP.

Below we will take the HOIS closed form for the two-dimension one-parameter acoustic
medium as an example and discuss the beyond direct-depth imaging algorithms. ISS direct-
depth imaging algorithm is completed in two steps:

(1). Based on equation 6, inverting the G0 operator on both sides of V1 gives the linear (in the
data) imaging in terms of the measured data and the reference velocity. It is a Stolt migration
using the reference velocity. In the two-dimension one-parameter acoustic medium, it is (Liu,
2006)

˜̃α1(km, kz) = − 4qgqs
ω2/c2

0

∫ ∞
−∞

dxme
−ikmxm

∫ ∞
−∞

dτeiωτDτp(xm, τ), (10)

in which,

Dτp(xm, τ) =
∫ ∞
−∞

dxhD(xm +
xh
2
, xm − xh

2
, τ + xh

sin θ
c0

), (11)

and

α1(x, z) = V1(x, z)/
ω2

c2
0

. (12)

107



Imaging M-OSRP10

68

268

468

668

868

1068

1268

de
pt

h

-2000 -1000 0 1000 2000
width

Figure 1: Water-speed Stolt migration for the fault model.

(2). Plug the α1 result from step 1 into the HOIS closed form

αHOIS
(
x, z +

1
2

∫ z

−∞
du

α1(x, u)
1− 0.25α1(x, u)

)
= α1(x, z), (13)

and get a remigrated result.

Figure 1 shows the water-speed Stolt migration for the fault model (Liu and Weglein, 2009),
and Figure 2 shows the imaging result after applying the HOIS closed form. For the �at
re�ectors the HOIS imaging result shows improved accuracy, and for the dipping re�ectors
the accuracy is good but there is still room for improvement. This issue will be addressed by
those terms that are not captured by HOIS.

3 ISS imaging algorithms beyond HOIS for lateral variations

3.1 Gradient HOIS

Figure 3 is a scheme of what happens to the dipping re�ector when HOIS is applied. The
re�ector is undermigrated because HOIS does not fully make use of the information from the
linear imaging result and only remigrates in the z direction. One reasonable modi�cation is
to localize the HOIS imaging algorithm: let the gradient guide the migration direction. The
modi�ed gradient HOIS has the following form:

αHOIS
(
~r +

∇α1

|∇α1| ∗
1
2

∫ z

−∞
du

α1(x, u)
1− 0.25α1(x, u)

)
= α1(~r). (14)
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Figure 2: HOIS image for the fault model.

Figure 3: A scheme about the HOIS imaging.
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Figure 4: Normalized ∂α1/∂x for the fault model.
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Figure 5: Normalized ∂α1/∂z for the fault model.
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Figure 6: Localized HOIS image for the fault model.

If we take a look at α2,2, the �rst term that is not captured by HOIS (Liu, 2006)

α2,2(x, z) =
1
2
∂α1(x, z)

∂x

∫ z

−∞
dz

∫ u

−∞
dv
∂α1(x, z)

∂x
, (15)

and the imaging term in α2,1

αIM2,1 (x, z) =
1
2
∂α1(x, z)

∂z

∫ z

−∞
dz

∫ u

−∞
dv
∂α1(x, z)

∂z
. (16)

it does have some quantities related to the gradient, although we are not clear what it is yet.

Figures 4 and 5 show plots of the normalized partial derivatives of α1 over x, ∂α1/∂x
|∇α1| , and

over z, ∂α1/∂z
|∇α1| . Figure 6 is the gradient HOIS image result. Compared with the HOIS result

in Figure 2, the dipping re�ector is located much closer to its actual location, and outside of
its shadow zone, the �at re�ectors are not a�ected. When the re�ectors are �at, the gradient
is in the z direction, but in its shadow zone, the imaging is not clear, and the corresponding
area in Figure 4 and 5 is disordered. The energy re�ected by those areas take an even more
complex path than that re�ected by the fault.

3.2 HOIS plus lateral exlusive

In the gradient HOIS, because of the complexity of the energy path, the fault shadow zone
area is not well imaged. Here we will try another approach. We do not use the local gradient
to guide the migration direction. Instead, similar to Kirchho� migration, we migrate in every
direction and assume that the interfereces over di�erent angles will construct the desired part
and destruct the undesired part.
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Figure 7: HOISPLE image for the fault model.

We will call the algorithm HOISPLE in the following and mathematically, it has the form,

αHOIS
(
~r + û ∗ 1

2

∫ z

−∞
du

α1(x, u)
1− 0.25α1(x, u)

)
= α1(~r), (17)

where
û = sinψx̂+ cosψẑ, ψ ∈ [π/2, π/2] (18)

and the �nal imaging I(x, z) equals to the interference of α over di�erent angles,

I(x, z) =
∑
ψ

α
′′

(x, z, ψ) . (19)

Here we use α′′ instead of α to make the non-wavefront parts cancelled by destructive inter-
ference. ψ represents the migration angle with respect to the z direction, which could range
in [π/2, π/2]. But for most cases, a subset is chosen to save computational time.

Figure 7 is the HOISPLE imaging result for the fault model. An amplitude gain has been
used to bring up the deeper parts in Figure 7. The fault location is similar to the result of
gradient HOIS in Figure 6, both being closer to the actual location than the result of the
original HOIS in Figure 2. Also, the di�raction e�ect is attenuated after HOISPLE imaging.

Figures 8 and 9 are the HOIS and Kirchho�PLE imaging results for the salt model (Liu,
2006). An amplitude gain has been used in Figure 9. As in the fault model, the bottom of
the salt body after HOISPLE migration is located much closer to the actual location than
the HOIS result and the di�ractions are largely reduced.

4 Discussion and conclusions

In this paper, we proposed two di�erent beyond HOIS direct-depth imaging algorithms to
accommodate large variations within the medium: the gradient HOIS and HOISPLE. The
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Figure 8: HOIS image for the salt model.
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Figure 9: HOISPLE image for the salt model.
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gradient HOIS directly uses the gradient of α1 as the direction guidence for the nonlinear
imaging algorithm. The testing result shows that the dipping re�ector is better imaged but
not those areas beneath it. The HOISPLE migrates in all angles and the interference of its
results constructs the desired imaging. Its testing results show improvements in both locating
the fault and collapsing di�ractions. More research and tests will be done for these new
algorithms.
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Developing multidimensional depth imaging for a velocity and density varying

earth: An initial imaging study and 2D two-parameter modeling to generate

data in the (x, t) domain needed to test ISS imaging algorithms

D. Chang, A. B. Weglein and F. Liu, M-OSRP, University of Houston

Abstract

The inverse scattering series imaging algorithm has been used successfully on multidimen-

sional velocity varying earth. However, in the real case there is always rapid density variation

in the medium. We have made progress in the development of multidimensional depth imaging

with a velocity and density varying earth. The �rst step, completed at the time of this writing,

is testing the e�ectiveness of the current ISS imaging algorithm on synthetic data generated by

�nite di�erence modeling in the x-t domain. This goes one step further from previous tests using

analytic data generated directly in the f -k domain, which is important because numerical data

are the only way to multidimensional imaging tests. The ISS multiparameter imaging algorithm

requires comparisons between the amplitude of data at di�erent angles, which puts a high bar

on the accuracy of numerical data. We show here that ISS imaging results on synthetic data

are encouraging. The 2D �nite di�erence modeling for a velocity and density varying earth is

documented as a progress in our group. We also discuss the steps we are taking towards multi-D

depth imaging research.

1 Introduction

Conventional imaging methods require an adequate velocity model for accurate depth imaging.
These methods often fail because of inadequate velocity analysis due to complex subsurface
geology. In contrast, the inverse scattering series (ISS) can directly achieve the seismic depth
imaging goal without subsurface information. F. Liu's higher order imaging subseries (HOIS)
algorithm has produced successful results on multidimensional earth with velocity varying
(Liu, 2006). Now, we aim at extending this multidimensional depth imaging algorithm to a
velocity and density varying earth.

Re�ections from the subsurface can be caused by variations in velocity or density or both. A
one-parameter imaging algorithm will misinterpret the imaging results by attributing all the
re�ections to velocity variation. �Imaging conjecture� was proposed to address this issue in
2007 (Weglein, 2008). It has a front end that excludes the density contribution from data.
Solving the front end requires comparisons between data at di�erent angles and this puts a
high bar on the quality of data. The form and validity of imaging conjecture has been veri�ed
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on 1D analytic data directly generated in the f -k domain (Jiang and Weglein (2009); X. Li
and Weglein (2009); H. Liang and Li (2010)). However, there is no analytic data expression
in multi-D case, but only numerical data. We tested the capability of excluding density-only
re�ections for the �rst time using synthetic data generated in the x-t domain by the �nite
di�erence method for a 1D earth with density variations, and outlined the plan and steps
towards the multidimensional depth imaging for a multi-parameter earth.

Two additional developments are documented here towards our objective: F. Liu's �nite-
di�erence framework for 1D two-parameter acoustic medium has been generalized to 2D to
accommodate multi-D depth imaging research within our group. The numerical transforma-
tion of data from τ -p domain to pseudodepth angle-gather domain for prestack experiment
(water-speed migration) has been demonstrated.

It's important to point out that the generalization of the conjecture in excluding density
contribution from its 1D acoustic or elastic form to multi-D medium is still based on intuition
rather than a consolidated theory. So, ending up with 2D modeling, we outline the steps
towards exploring multi-D depth imaging.

2 The issue of excluding the density contribution from data

2.1 The validity on 1D analytic data

For a 1D acoustic earth with velocity and density varying, ISS imaging algorithm has the
following form:

DHOIS

(
z +

1
2

∫ z

−∞

α1(z′)− β1(z′)
cos2 θ − 0.25(α1(z′)− β1(z′))

dz′, θ

)
= D(z, θ) (1)

D(z, θ) on the right is the result of water-speed migration. The HOIS algorithm corrects
the wrong depth in D(z, θ) and moves the re�ectors to their actual depths. θ represents the
incident angle. A simple method to solve for the front end α1(z) − β1(z) from the linear
equation 2 is to choose two di�erent angles:

D(z, θ) = −ρ0

4

[
1

cos2 θ
α1(z) + (1− tan2 θ)β1(z)

]
(2)

α1(z)− β1(z) = − 4
ρ0

D(z, θ1)−D(z, θ2)
tan2(θ1)− tan2(θ2)

(3)

For data directly expressed in the f -k domain as shown in equation 4,

D̃(qg, θ) = ρ0R(θ)
e2iqga

4πiqg
(4)
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it is straightforward to prove (Zhang, 2006) that the linear estimation of the relative change
in velocity is related to the front end as the following expression:

(
4c
c

)1 =
1
2

(α1 − β1) = 0 (5)

when 4c = 0. This means that if there is no velocity variation across the boundary, α1(z)−
β1(z) is zero.

2.2 The conjecture on 2D numerical data

The research on the challenge of excluding the density contribution from data for a 2D acoustic
medium starts with an extension of the front end from its 1D form directly to a 2D form
α1(x, z) − β1(x, z). To evaluate its validity, we have to use numerical data because of the
inaccessibility of analytic data expressions for multidimensional medium. In the previous
reports, all the multi-parameter imaging tests utilize the perfect analytic data while tests on
numerical data have never been tried, which motivates the work in this report. Here, we
make one step ahead, testing the current multi-parameter imaging algorithm on numerical
data. This serves as a bridge linking our previous 1D analytic data tests and the next 2D
numerical data tests by giving us a preliminary estimation that how much will the accuracy
of the numerical data a�ect the imaging results.

3 Numerical tests using synthetic data

3.1 The issue we want to test on synthetic data

From equation 3 we can see that solving the front end needs the communication between data
at two di�erent angles and this puts a high bar on the accuracy of numerical data. In this
report, we are going to evaluate this accuracy by using numerical data as input rather than
perfect analytic data used in the previous tests.

Liu and Weglein (2010) analyzed the e�ect of using analytic data with a band-limited seismic
source within the imaging conjecture and proposed a regularization method to deal with the
fact that, for imperfect data, the front end could be nonzero when there is only a density
change across the boundary. Here, we use synthetic data generated by �nite di�erence mod-
eling to test the capability of α1(z)− β1(z) in excluding density-only re�ections. Apart from
the wavelet issue, other factors such as the intrinsic noise from modeling computation as well
as noise from numerical transformations among others might also a�ect the imaging results.

3.2 Data generation using �nite di�erence modeling

We �rst review the �nite di�erence modeling for a 2D two-parameter acoustic medium starting
with the isotropic acoustic wave equation in Clayton and Stolt (1981):
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5 ·[ 1
ρ(x, z)

5 P (x, z, t)]− 1
K(x, z)

∂2

∂t2
P (x, z, t) = 0 (6)

where K(x, z) = ρ(x, z)c2(x, z) is the bulk modulus. We apply fourth and second order �nite
di�erence schemes for the space and time derivatives respectively. The homogeneous form of
equation 6 can be approximated in rectangular coordinates as

Pm,n,l+1 = [2− 5D2]Pm,n,l − Pm,n,l−1 +
4
3
D2(1 +Aρm,n)Pm+1,n,l+

4
3
D2(1−Aρm,n)Pm−1,n,l − 1

12
D2(1 + 2Aρm,n)Pm+2,n,l−

1
12
D2(1− 2Aρm,n)Pm−2,n,l +

4
3
D2(1 +Bρm,n)Pm,n+1,l+

4
3
D2(1−Bρm,n)Pm,n−1,l − 1

12
D2(1 + 2Bρm,n)Pm,n+2,l−

1
12
D2(1− 2Bρm,n)Pm,n−2,l+

0(h4 +4t2) (7)

where D = 4t · cm,n/h. Our numerical modeling satis�es the stability condition that D ≤√
3/8. 4x = 4z = h is the grid size in the x and z directions, respectively; m, n, and l

are integers such that x = m4x, z = n4z, t = l4t; the scheme approximates the partial
di�erential equation to the order h4. Coe�cients A and B are determined by densities at
di�erent grids as

A = − 1
24

1
ρm+2,n

+
1
3

1
ρm+1,n

− 1
3

1
ρm−1,n

+
1
24

1
ρm−2,n

(8)

B = − 1
24

1
ρm,n+2

+
1
3

1
ρm,n+1

− 1
3

1
ρm,n−1

+
1
24

1
ρm,n−2

(9)

Liu and Weglein (2005) analyzed the importance of implementing the source signature accu-
rately to the waveform modeling and gave a new method for accurate implementation of the
source at arbitrary locations.

Assuming that for a small time interval the wave �eld propagates in a homogeneous medium
around the source location, the energy of the wave outside the circular region can be neglected.
Equation 9 in Alford et al. (1974) is used to precalculate the wave �elds at two time points.
Figure 1 shows two analytic wave�elds at t0 = 0.0895 s and t0 +4t = 0.0900 s, which are then
straigtforwardly implemented at any location where we want to put the source. The wavelet
used here is the Ricker wavelet, one of the most commonly encountered wavelets in the real
seismic experiments, with a peak frequency at 28 Hz, as shown in Figure 2. We take the model
in Figure 2 as an example. The �nite di�erence data is shown in Figure 3. The parameters in
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Figure 1: The precalculated wave�elds at 0.0895 s and 0.0900 s.

Figure 2: 1D two-parameter acoustic model and the wavelet used for modeling. c0=1500 m/s, c1=1600

m/s, c2=1700 m/s, ρ0=1.0 g/cm
3, ρ1=1.1 g/cm

3, and ρ2=1.2 g/cm
3. The wavelet is the �rst

derivative of Gaussian.
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Figure 3: Finite di�erence modeling results using the source �elds at 0.0895 s and 0.0900 s.

Step 1: Source regularization: recovering the wavelet to Gaussian

Step 2: 2D Radon transform (the o�set variable is regarded as the x-coordinate)

Step 3: Water speed migration

Step 4: Excluding density contribution

Step 5: ISS imaging subseries

Table 1: Data processing �ow.

modeling have been properly adjusted so that there are no ghosts and free-surface multiples
in the data. The re�ected data contains only primaries and internal multiples.

Before solving the front end for imaging, we need to transform the data to the pseudodepth
domain, i.e., D(z, θ), to accommodate the linear equation 2 for inverting the parameters
describing the medium properties. Please note that all the analytic data used in the previous
tests are Fourier transformed to this domain for imaging.

3.3 Data processing �ow

Our data processing �ow starts with the re�ected data shown in Figure 3. Table 1 lists all
the numerical transformations towards the imaging tests.

The ISS imaging algorithm is written for an ideal source with full bandwidth. Previous tests
show that the Gaussian wavelet can o�er satis�ed imaging results. The source regularization
here is to recover the wavelet from the Ricker wavelet to Gaussian. Interested readers can
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refer to Fang Liu and Weglein (2011) for more details of source regularization, but for Gussian
type wavelets, the operation is just an integral over time. The second step is a 2D Radon
transform to this 2D propagation data set. Interested readers can refer to Fang Liu and
Weglein (2011) for more details of Radon transform. After this, the data is further migrated
to the psudodepth angle-gather domain with water speed. This data set is then used to solve
for the front end to exclude density contribution. Finally the water-speed migrated data and
the front end are input to the ISS imaging subseries to get the �nal result. All the tests shown
here follow this processing �ow.

Liu and Weglein (2010) illustrated how to transform the data from time domain to pseudo-
depth domain for 1D normal incidence. Here we generalize the analysis to 2D wave propaga-
tion. The basic principle that the integration of data in time domain over t should equal the
integration of data in pseudodepth domain over z, i.e.,

∫
d(t)dt =

∫
D(z)dz (10)

results in the conclusion that the data in time domain can be transformed to pseudodepth
domain through stretching the argument by a factor c0/2 and squeezing the data amplitude
by 2/c0.

For 2D wave propagation where data is a function of t and x, the basic idea above should be
generalized as follows: The integration of data in τ -p domain over τ equals the integration of
data in pseudodepth domain over z, i.e.,

∫
d(τ)dτ =

∫
D(z)dz (11)

because we can think of each trace in x-t domain as a normal incident trace described by
its vertical time τ . In Fourier domain the relationship in Liu and Weglein (2010) changes to
D̃(kz) = D̃(2ω cos θ/c0) = d̃(ω). Following similar logic and remembering that z = c0τ/2 cos θ
or τ = 2z cos θ/c0 for non-normal incidence, we have the transformation described by equation
12.

Thus, the data in τ -p domain can be transformed to pseudodepth domain through stretching
the argument by a factor c0/2 cos θ and squeezing the data amplitude by 2 cos θ/c0. Figure 4
shows the data transformed to τ -p domain from the data after source regularization and then
transformed to pseudodepth domain following the above logic.

D(z, θ) =
1

2π

∫ ∞
−∞

dkze
−ikzzD̃(kz, θ)

=
1

2π

∫ ∞
−∞

d(
2ω cos θ
c0

)e−i
2ω cos θ
c0

z
D̃(

2ω cos θ
c0

, θ)

=
2 cos θ
c0

1
2π

∫ ∞
−∞

dωe
−iω 2z cos θ

c0 D̃(
2ω cos θ
c0

, θ)
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Figure 4: (left) Data after source regularizationin; (middle) Data in the τ -p domain; (right) Data in the

pseudodepth domain.

=
2 cos θ
c0

1
2π

∫ ∞
−∞

dωe
−iω 2z cos θ

c0 d̃(ω, θ)

=
2 cos θ
c0

d(
2z cos θ
c0

, θ) =
2 cos θ
c0

d(τ, θ) (12)

4 Testing results

A series of testing results using imaging conjecture are shown. The models being tested are
arranged in increasing order of imaging complexity so that the capability of the ISS imaging
conjecture can be clearly seen.

In Figures 5, 6, 7 and 8 the panels represent (left) the earth model, (middle) the data after
water-speed migration and (right) the result of ISS imaging algorithm. The �rst model being
tested is a two-interface model with only density change across each re�ector (Figure 5). ISS
imaging gives the same result as water speed migration by excluding the density contribution.

In the second model we replace the density variation with velocity variation , in which water-
speed migration can not give a correct image. ISS imaging algorithm, in this case, reduces to
single-parameter imaging algorithm and corrects the image.

In the third example, the density and velocity variations in models 1 and 2 are combined into
a two-interface model (Figure 7). ISS imaging algorithm successfully excludes the portion of
the re�ections due to density change and uses the portion due to velocity change for imaging.
The second re�ector moves to its correct depth.
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Figure 5: Model-1 c0=1500 m/s, ρ0=1.0 g/cm
3, ρ1=1.1 g/cm

3 and ρ2=1.2 g/cm
3. Blue lines represent

the correct location of the re�ectors.

Figure 6: Model-2 c0=1500 m/s, c1=1600 m/s, c2=1700 m/s, and ρ0=1.0 g/cm
3. Blue lines represent the

correct location of the re�ectors.
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Figure 7: Model-3 c0=1500 m/s, c1=1600 m/s, c2=1700 m/s, ρ0=1.0 g/cm
3, ρ1=1.1 g/cm

3, and ρ2=1.2

g/cm3. Blue lines represent the correct location of the re�ectors.

Figure 8 is the last and most complicated model in which both density and velocity change
across three re�ectors. Water-speed migration mislocates the second and even worse, third
re�ectors. However, ISS imaging algorithm deals with this long duration of contrast with
satisfactory imaging results.

5 The imaging issue in a multidimensional medium

We �rst consider a 2D earth model with varying velocity and density, in which the second
interface has a dipping angle. We do not have analytic data expressions for this 2D model.
The numerical data is generated using the same �nite di�erence modeling and the data is
shown in Figure 10. Note that the second primary is not symmetric anymore due to the
second dipping re�ector.

The �rst step is to test whether the 2D front end α1(x, z)−β1(x, z) goes to zero if velocity
does not change across the boundary (Figure 9). The inversion for α1(x, z) and β1(x, z) will
follow the logic in Clayton and Stolt (1981):

D(kg, ks, ω) =
−ρ0

4qgqs

[
ω2

c2
0

α1(kg − ks,−qg − qs) + (qgqs − kgks)β1(kg − ks,−qg − qs)
]
S(ω). (13)

D(km, kh, kz) =
−ρ0

4

[
(k2
z + k2

h)(k2
z + k2

m)
k4
z − k2

mk
2
h

α1(km, kz) +
(k2
z − k2

h)(k2
z + k2

m)
k4
z − k2

mk
2
h

β1(km, kz)
]
S(ω). (14)
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Figure 8: Model-4 c0=1500 m/s, c1=1600 m/s, c2=1700 m/s, c3=1800 m/s and ρ0=1.0 g/cm
3, ρ1=1.1

g/cm3, ρ2=1.2 g/cm
3, ρ3=1.3 g/cm

3. Blue lines represent the correct location of the re�ectors.

Figure 9: A 2D acoustic earth model with varying velocity and density.
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Figure 10: Finite di�erence modeling results for the 2D model using the same source �elds and wavelet.

If the answer is zero, we will further test the conjectured 2D HOIS algorithm:

DHOIS

(
x, z +

1
2

∫ z

−∞

α1(x, z′)− β1(x, z′)
cos2 θ − 0.25[α1(x, z′)− β1(x, z′)]

dz′
)

= D(x, z) (15)

However, if the answer is nonzero, we will have to develop a new theory for multi-D depth
imaging algorithm to deal with the issue of excluding density contribution.

6 Conclusion and future plan

Starting from �nite di�erence modeling we generated data in the x-t domain for some 1D earth
models with variations in velocity and density. After a series of numerical transformations the
data was �nally prepared in the pseudodepth domain and input to the ISS imaging algorithm.
The results showed high capability of imaging conjecture in excluding density contribution.
Noise from the �nite di�erence modeling and artifacts from numerical transformations were
tolerated by ISS imaging algorithm. Taking the second model as an example, the re�ection
coe�cient at the �rst interface given by theoretical calculation is around 0.0333. The minimum
deviation estimation given by �nite di�erence data is less than 0.05%. This positive message
also veri�es the �delity of our �nite di�erence modeling. Next we plan to investigate the
removal of density only re�ections to a laterally variable earth to allow multidimensional and
multi-parameter ISS depth imaging.
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Initial examination of the concept of events in seismic processing: A 2D source

single re�ector modeling example

L. Tang, A. B. Weglein and P. Terenghi

Abstract

In this report we revisit the meaning of events in seismic physics. In seismic exploration, ray

theory is broadly applied because of its simplicity and intuition. However ray theory is strictly

valid only on the basis of high frequency assumption, which is often not true in the developing

standard for seismic exploration. In this report we use the Cagniard-de Hoop method to model

perfect seismic data in time domain, and then observe the di�erences between the direct wave

and the re�ected wave generated by a one-re�ector acoustic model with a line source. The

validation of ray theory is examined and discussed.

1 Introduction

In seismology, ray theory and the convolutional model are extensively used due to their
simplicity, intuition and broad applicability. Under ray theory, an event is a sharp arrival,
generated by energy traveling through a raypath from source to receiver. The raypath is
the stationary path de�ned by Fermat's Principle. The portions of the model not visited by
the ray provide no contributions to the wave-�eld. A more accurate way of describing wave
propagation is using wave theory, where according to the Huygen-Fresnel Principle, each point
on the wavefront contributes to the wave-�eld at the receiver. In the case of high frequency,
ray theory well approximates wave theory. However, the seismic industry trend is to extend
the use of low frequency to values as low as 2 Hz, in order to have farther propagation and
better inversion result (Dragoset and Gabitzsch (2007)). When, as in these cases, ray theory
is not su�ciently accurate, then the meanings of events as de�ned in the convolutional model
should be reconsidered carefully.

In this report we testify the validation of ray theory at di�erent frequencies. Using a sim-
ple one-re�ector acoustic model and a line source, we observe and compare the waves that
propagate from the source to the receiver directly and the wave that experiences re�ection
at the interface. The comparison of the waves' bandwidth and shape requires an accurate
modeling method in the space-time domain. For our test, the Cagniard-de Hoop method is
a good choice (de Hoop and van der Hijden (1983); Aki and Richards (2002)). First of all,
in our simple model case this method can provide an exact analytic solution without doing
numerical integrations. Secondly, it can calculate individual wave�eld events, so that the
direct wave and re�ected wave can be obtained directly.

In the following sections, after a brief theoretical introduction, we discuss the two Green's
functions de�ned within the Cagniard-de Hoop method (direct wave and re�ected wave).
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Then the convolution of the Green's function with source wavelets with di�erent frequencies
is performed. Thus the direct wave and re�ected wave are compared, followed by a discussion
on the validity of the ray theory.

2 Modeling using Cagniard-de Hoop Method

We consider the 2D wave�eld excited by a line source in a simple one re�ector 1D acoustic
medium. For that case the Cagniard-de Hoop method has the ability to provide an exact,
perfect solution for the wave-�eld in time domain. The modeling method was implemented
to code by Zhang and Weglein (2006). The wave equation for 2D propagation, in a constant
density medium is

∇2P (x, z, t)− 1
c2

∂2

∂t2
P (x, z, t) = A(t)δ(x)δ(z − zs), (1)

where the line source is located at (0, zs), with the source signature A(t). In order to have
all the frequencies observed, we set A(t) = δ(t), and thus the solution to this equation is the
medium's Green's function, which satis�es

∇2G(x, z, 0, zs, t)− 1
c2

∂2

∂t2
G(x, z, 0, zs, t) = δ(t)δ(x)δ(z − zs). (2)

In order to solve equation 2, the Cagniard-de Hoop method performs Laplace transform over
t and a Fourier transform over x, which means to apply∫ ∞

−∞
e−ikxxdx

∫ ∞
0

e−stdt (3)

on both sides of equation 2, where s > 0. The new equation becomes

∂2

∂z2
G(kx, z, s)− n2G(kx, z, s) = δ(z − zs), (4)

where n2 = k2
x + s2/c2. To solve equation 4, we �nd that everywhere except at z = zs,

∂2

∂z2
G(kx, z, s) = n2G(kx, z, s), the solution is

G(kx, z, s) = Aen(z−zs) +Be−n(z−zs) for z 6= zs, n > 0, (5)

where A and B are constants determined by the boundary conditions. Considering z → ±∞,
we have that A = 0 for z > zs and B=0 for z < zs. Also considering the continuity of G at
z = zs and the step jump of ∂G/∂z at z = zs by -1, we solve equation 4 as

G(kx, z, s) = − 1
2n
e−n|z−zs|. (6)

After solving equation 4, we have

G(x, z, s) =
1

2π

∫ ∞
−∞

G(kx, z, s)eikxxdkx. (7)
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We also notice that

G(x, z, s) =
∫ ∞

0
G(x, z, t)e−stdt, (8)

so if we can manipulate equation 7 to be in the form of equation 8, then the expression for
G(x,z,t) can be solved by just looking at the new form of integrand without carrying out any
actual numerical integrals. The details of the derivation can be found in de Hoop (1960), and
here we just write the solutions directly.

Gd(x, z; 0, zs, t) = − 1
2π

H(t−R0/c0)√
t2 −R2

0/c
2
0

, (9)

where
R0 =

√
x2 + (z − zs)2. (10)

For Green's function for the re�ected wave, we should also consider the existence of head wave
in the region of x < R0c0/c1. For a two layer constant density acoustic model with velocities
c0 and c1, the re�ection's Green's function for the pre-critical region ( x < Rc0/c1) is

Grefl(x, z; 0, zs, t) = − 1
2π
ReP̀ Ṕ

H(t−R/c0)√
t2 −R2/c2

0

, (11)

and for x < Rc0/c1, the post-critical region, the Green's function is

Grefl(x, z; 0, zs, t) = − 1
2π
ImP̀ Ṕ

H(t− th)−H(t−R/c0)√
R2/c2

0 − t2
− 1

2π
ReP̀ Ṕ

H(t−R/c0)√
t2 −R2/c2

0

, (12)

where

R =
√
x2 + (z + zs − 2zd)2, (13)

th =
x

c1
+ |z + zs − 2zd|

√
c−2

0 − c−2
1 , (14)

P̀ Ṕ =
η0 − η1

η0 + η1
, (15)

ηi =
√
c−2
i − p2, where i = 0, 1 (16)

p =

{
xt−|z+zs−2zd|

√
R2/c20−t2

R2 t ≤ R/c0

xt+i|z+zs−2zd|
√
R2/c20−t2

R2 t ≥ R/c0

. (17)

Here ReP̀ Ṕ (t) is the generalized re�ection coe�cient which relates with all the re�ections at
each point on the re�ector. th is the time when the head wave arrives. In our experiment, to
simplify the discussion, we choose to compare only the direct wave in the pre-critical re�ection
region.

3 Analytic Test Result

Before starting to compare the direct wave and the re�ected wave, we need to notice from
the form of Green's functions that the values of R0 in G

d and R in Grefl should be the same,
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so that only the e�ect due to the re�ection at the subsurface contributes to the di�erence
of the two waves. Figure 1 shows two models we used to generate direct wave and re�ected
wave. Figure 2 shows the two Green's functions in time domain. Since the amplitude of
the re�ection's Green's function is smaller than that of the direct wave due to the e�ect of
generalized re�ection coe�cient ReP̀ Ṕ , and because we are more interested in their shape
than in their absolute amplitude, in the following steps, we choose to normalize these two
waves to the same maximum.

Figure 1: Models used to generate (left) direct wave, (right) re�ected wave

Then we use Ricker wavelets at di�erent peak frequencies, and convolve them with the Green's
functions, to get the direct wave and re�ected wave. An example of Ricker wavelet with a peak
frequency of 15 Hz is shown in Figure 3. From the comparison of the shapes of direct wave
and re�ected wave shown in Figure 4. We can see that in the low-frequency range as shown
in Figure 4 (a) and (b), there is an apparent di�erence between them. As the frequency goes
higher the di�erence decreases, and at 50 Hz the shape of direct and re�ected wave almost
overlap.

The test result provides an insight into the conditions and assumptions behind the ray theory.
In the high frequency range, the exact wave�eld solution provided by the Cagniard-de Hoop
method shows that the re�ected wave cannot be distinguished from a direct wave with the
same arrival time. In that case, the wave theoretic result is well approximated by a geometric
ray, determined by Snell's law, which only experiences the re�ector at one point. When the
frequency goes to as low as 6 Hz, the approximation of geometric rays is no longer valid.
The re�ected wave in this case is contributed by all the re�ections at di�erent points on the
re�ector with di�erent arrival times.
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Figure 2: Two Green's functions in time domain. Red: direct Green's function. Green: re�ection Green's

function.

Figure 3: Ricker wavelet, peak frequency 15 Hz.
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Figure 4: Comparison of direct wave (red) and re�ected wave (green). Peak frequency of Ricker wave:(a)2

Hz,(b)6 Hz,(c)15 Hz,(d)50 Hz

4 Conclusion

In this report, the validation of ray theory is studied. With the aid of the Cagniard-de
Hoop modeling method, the direct Green's function and the re�ection Green's function are
computed and examined. The convolution with a Ricker wavelet is performed under di�erent
frequencies, so that the shape of direct wave and re�ected wave are compared. In doing so we
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observed that in the high-frequency range ray theory is valid and the shape of the re�ected
wave remains the same as the direct wave, while in the low-frequency range, the re�ected
wave displays a distortion contributed by wave theoretical e�ects which are not accounted for
in the ray theory.
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An inverse scattering approach to free-surface multiple removal from

quasi-elastic ocean bottom seismic data

Mozhdeh Niazmand, Paolo Terenghi and Arthur B.Weglein

Abstract

We study the inverse scattering series method for predicting and eliminating multiples from

ocean bottom seismic data. In particular, we focus our analysis on non-consolidated ocean �oors.

This study is inspired by the problem of soft ocean bottoms where poor coupling of receivers

makes collecting multi-component data di�cult or impossible. In 1997, Ken Matson formulated

an inverse scattering based subseries to eliminate elastic ocean bottom multiples for the �rst

time where a solid ocean bottom was considered. We conduct a study to adapt that approach to

the problem of soft ocean bottoms. We take a closer look at the re�ection coe�cients that play

a direct role in the ocean bottom multiple removal sub-series. In order to simulate the e�ect

of a muddy unconsolidated ocean bottom, we analyzed the behavior of the re�ection coe�cient

a�ecting elastic wave propagation for a set of gradually decreased values of shear wave velocity.

The P-wave re�ection coe�cient for an acoustic over elastic half-space can be described as the

P-wave re�ection coe�cient of two acoustic half-spaces plus a correction term, which in the

zero shear wave velocity limit will vanish. Thus, at the zero shear wave velocity limit, the

two re�ection coe�cients are equal. We then analyze these re�ection coe�cients. The analysis

shows that for angles less than 10 degrees and for shear wave velocities ranging from zero to 800

m/sec, the P-wave re�ection coe�cients have a good agreement with one another, regardless of

the value for shear wave velocity.

1 Introduction

Ocean bottom seismic (OBS) data acquisition has the potential to provide us with shear
wave components in addition to pressure wave components and, in that sense, it could lead
to a more complete set of collected data. However, proper placement and coupling of the
receivers to the bottom of the ocean can be a challenge; it can be even more di�cult if the
ocean bottom is not consolidated. An example is the deep water Gulf of Mexico where the
ocean �oor starts as muddy, gradually gains rigidity, and eventually becomes rock solid. A
measure of rigidity in substances is the shear modulus which describes the material's response
to shearing strains. The more rigid a substance is, the higher is its shear modulus. For
example, the shear modulus of diamond is 478 Gpa. In liquids and gases, on the other hand,
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the shear modulus is zero. Shear modulus is denoted by µ and is directly related to the shear
wave velocity of the substance. It is described mathematically as

vs = β =
√
µ

ρ
, (1)

where vs or β is the shear wave velocity and ρ is the density of the substance.

2 Background

2.1 An overview of the Inverse Scattering Series

In physics, a theory that enables us to predict the outcome of some measurements, given a
complete description of a system, is referred to as the forward description or forward problem.
An inverse problem would be to use the actual result of some measurement of an unknown
system to infer values of the parameters that characterize that system. Scattering theory is a
wave theoretical approach that has been used in many disciplines of physics, engineering, and
medical sciences as a tool in studying and investigating the structure of matter. Scattering
theory describes the physics of the deviation of any form of radiation (e.g. light, sound or
particle beams) from its trajectory in a reference meduim, by colliding to a localized obstacle
or a form of perturbation in the medium through which it's propagating. The perturbation can
be characterized by a change in the mechanical properties of the medium of propagation(i.e.
density and/or velocity) or an inhomogeneity. The deviated wave�eld is denoted as the
scattered wave�eld and the change or deviation from the mechanical properties that causes
the scattering is known as the scattering potential. Forward scattering deals with determining
the scattered wave �eld from a known scattering potential and a known reference medium.

Inverse scattering theory aims to determine the scattering potential from the measurements
of the scattered wave�eld that satis�es certain boundary conditions. Inverse scattering-based
methods were introduced to geophysical sciences and petroleum exploration industry in the
early 1980s (Weglein et al., 1981). Recent development presented by Weglein et al. (2003)
introduces an new framework that utilizes inverse scattering series that consists of several
task-speci�c subseries for the purposes of multiple removal, imaging and inversion, which
does not require any a priori information from the subsurface, i.e. it's data-driven.

As a solution to the inverse scattering problem, one can take the physical (actual) medium
under the study, and split it into a background or reference and a perturbation. There are
many ways to split the actual medium into a reference and a perturbation but for mathematical
convenience the background medium can be chosen in way that a Green's function propagating
in that medium can be easily obtained either analytically or numerically.

The mathematical description of this process starts with the di�erential equations that govern
the wave propagation in each of the media

LG = −δ(r− rs), (2)
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L0G0 = −δ(r− rs), (3)

where L, L0, G and G0 are, respectively, the wave equation di�erential operators and the
Green's function operators of the actual and reference media; δ(r−rs) is a Dirac delta function
denoting an impulsive point source located at point rs and observed at point r. The scattering
potential, denoted by V, indicates the di�erence between the wave equation operators for the
actual and reference media

V = L− L0. (4)

The data D is constituted by the di�erence between the measured wave�eld and the reference
wave�eld at the measurement surface,

D = (G−G0)m, (5)

wherem indicates the measurement surface. The relationship between the data and di�erence
in actual and reference media is described by the Lippmann-Schwinger equation, the basis
equation for scattering techniques,

G−G0 = G0VG. (6)

This is a non-linear relationship in a sense that G appears on both sides of the equation. A
way to isolate G to one side is to iterate the equation into itself. That results in an in�nite
series known as the Born (or the forward) series:

G = G0 + G0VG0 + G0VG0VG0 + . . . . (7)

Using the scattered wave�eld in 5 we can re-write the Born series as,

D = (G0VG0 + G0VG0VG0 + G0VG0VG0VG0 + . . . )m, (8)

where m refers to measurement surface. Now, assuming the perturbation V is itself expand-
able in a power series (V = V1 + V2 + ...), such that the ith order term in V, is the ith order
term in the data (i = 1, 2, 3, ...), we arrive at the inverse scattering series

G−G0 = G0(V1 + V2 + . . . )G0 (9)

+G0(V1 + V2 + . . . )G0(V1 + V2 + . . . )G0 + . . . .

Evaluating both sides of 10 at the measurement surface and equating terms of equal order
with each other, we obtain for the �rst order term

D = (G0V1G0)m, (10)

for the second order term

0 = (G0V2G0)m + (G0V1G0V1G0)m, (11)

and for third order term,
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0 = (G0V3G0)m + (G0V1G0V2G0)m
+(G0V2G0V1G0)m + (G0V1G0V1G0V1G0)m .

(12)

...

Equation 10 is now an exact equation for V1 and can be inverted. Once V1 is obtained
we can substitute it in equation 11 to determine V2. Then V2 itself can be inserted into
the third order equation 12 to get V3 and this trend continues to obtain any order Vi. It's
important to understand the symmetry between the forward and inverse scattering series. In
the forward series, operator G0 acts on the perturbation V to create data D; in the inverse
series, that same G0 operator acts on the data D, to create the perturbation V(eq. 10).
The signi�cance of this symmetry is that any Green's operator that is in charge of creating a
certain type of event in the forward series, is held accountable for removing that same event
in the inverse scattering series. This property can be used to remove multiples. For the case
of this report, we are using it to remove ocean bottom multiples from seismic data.

2.2 Previous Works

Carvalho (1992) derived an algorithm for identifying and removing acoustic free surface mul-
tiples from marine seismic data using the inverse scattering series. A model for the geometry
for the problem is shown in �gure 1. The sources and receivers are located in the water below
the free surface.

The reference medium of choice is a half-space of water bounded by a free surface on the
top. The existence of the free-surface boundary, causes the reference Green's function to
consist of two parts: one that directly propagates from the source to the receiver, and another
part that propagates upward, impinges on the free surface and then gets re�ected back down
towards the receivers. These two reference Green's functions are referred to as Gd0 and Gfs0

respectively (d for direct and fs for free surface)(Weglein et al., 1997; Carvalho, 1992). If the

free surface did not exist, the reference Green's function would consist only of Gd0. The G
fs
0

part, exists because of the presence of the free surface, and is creating all the free surface-
related events, i.e. ghosts and free surface multiples in the forward series. Hence, it should
be in charge of removing those events in the inverse series(Carvalho et al., 1992). Using this,
Carvalho formulated the subseries to identify and remove free surface multiples, using the
inverse scattering series(ISS) formalism devised by Weglein et al. (1981).

Matson (1997 ) adapted the ISS-based acoustic free surface multiple removal procedure by
Carvalho (1992) to elastic free surface multiple removal for land data, and using that, he
devised a procedure for identifying and attenuating multiples associated with an elastic ocean-
bottom.
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Figure 1: Carvalho's model for the free-surface multiple removal algorithm

The choice of reference for the ocean bottom removal procedure is a layer of water bounded
by a free surface on top and a homogenous elastic half-space on the bottom. The sources
and receivers are located at or slightly embedded in the ocean bottom (at depths zs and
zg respectively). The Green's function for the reference medium in this case becomes more
complicated compared to the free surface case, since the water layer is now bounded both on
top and bottom. The presence of air-water free-surface, and the ocean bottom interface, leads
to creation of a host of events: re�ections from the top of the water layer, re�ections from
the bottom of the ocean bottom, and a series of reverberations inside the water column. All
those events are referred to as water column events. The reference Green's function therefore,
similar to the method of Carvalho (1992), splits into two parts: a directly propagating Green's
function Gd0, directly from source to the receiver, and the Green's function associated with
the water column events Gwc0 ,

G0 = Gd
0 + Gwc

0 , (13)

where d indicates direct and wc denotes water column (see �gure 2). With the same analogy
as the free surface case, Gwc0 accounts for all of the events that have at least had one encounter
with the water column in the forward series and therefore is in charge of removing those events
in the inverse series.

Combining equations 8 and 13, the forward series to model the data is then

D = (Gd
0 + Gwc

0 )V(Gd
0 + Gwc

0 ) + (Gd
0 + Gwc

0 )V(Gd
0 + Gwc

0 )V(Gd
0 + Gwc

0 ) + . . . . (14)
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Figure 2: Reference Green's function for the water bottom multiple removal algorithm

Recall that
V = V1 + V2 + V3 + · · · ; (15)

using this series expansion and matching equal orders of the data , we arrive at ,

D = (Gd
0 + Gwc

0 )V1(Gd
0 + Gwc

0 ), (16)

0 = (Gd
0 + Gwc

0 )V2(Gd
0 + Gwc

0 ) + (Gd
0 + Gwc

0 )V1(Gd
0 + Gwc

0 )V1(Gd
0 + Gwc

0 ), (17)

0 = (Gd
0 + Gwc

0 )V3(Gd
0 + Gwc

0 ) + (Gd
0 + Gwc

0 )V1(Gd
0 + Gwc

0 )V2(Gd
0

+Gwc
0 ) + (Gd

0 + Gwc
0 )V2(Gd

0 + Gwc
0 )V1(Gd

0 + Gwc
0 ), (18)

....

Selecting from this series, only the terms that contain Gwc
0 between all the scatterers, will

lead to a subseries that will be used to eliminate multiples that are created because of the
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existence of the water column. This new subseries is called V′ and like V, it is also assumed
to be expandable in a power series,

V′ = V1 + V′2 + V′3 + . . . , (19)

where

V1 = G−1
0 DG−1

0 , (20)

V′2 = −V1Gwc
0 V1, (21)

V′3 = −V′2G
wc
0 V1 −V1Gwc

0 V′2 −V1Gwc
0 V1Gwc

0 V1 (22)

...

Note that the linear term in the V′ subseries is the original linear term inherited from the
V series. From these equations, a recursive relation can be derived that relates the nth order
term in the subseries, to its previous order term,

V′n = −V′n−1G
wc
0 V1. (23)

To transform V′ into data, two directly propagating Green's function operators need to act
on it from both sides. This creates a series consisting of a range of water column multiples
where their order re�ects their number of encounters with the water column,

D′ = Gd
0V
′Gd

0 = D1 + D′2 + D′3 + . . . , (24)

where D1 is the original data that's already been decomposed into up and down-going P and
S waves(down-going from the source and up-going at the reciever), D′2 represents a modeling
of events which propagate up from the scattering region, interact once with the water column,
and then propagate back down to the scattering region. When D′2 is added to D1, it cancels
all �rst order water column multiples in the data. In general, D′n removes all (n− 1)th order
water column multiples as it gets added to the data.
The nth order term in the multiple removal series is obtained as, (equation 4.24 in Matson
(1997 ))

D′n = −D1(Gd
0)−1Gwc

0 (Gd
0)−1D′n−1 = −D′n−1JD1, (25)

and it represents a modeling of events that undergo (n−1) interactions with the water column.
To remove successive orders of water column multiples, these terms need to be added to each
other order by order.

3 The analysis

Our objective is to be able to make an e�ective adaptation of the elastic ocean bottom multiple
removal procedure for ocean bottoms that are not rigid. The choice for the reference medium
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is, a water column bounded by a free surface on top and a homogeneous quasi-elastic half-
space in the bottom. The sources and receivers are located at or slightly embedded into the
water bottom. Figure 3 displays a sketch of the geometry of the problem. As mentioned
earlier, the motivation for this study lies in the fact that the unconsolidated ocean bottoms
are a quite common encounter in the OBS explorations, hence we aim to analyze the behavior
of the elastic ocean bottom multiple removal subseries as the water bottom goes through a
transition from elastic to acoustic. This leads to an investigation on the tolerance level of the
elastic ocean bottom multiple removal procedure for low or zero shear wave velocity and/or
missing or partially reliable recordings of shear waves.

Figure 3: A model for the geometry of the ocean bottom multiple removal problem.

The half-space below the water is assumed to be a homogeneous, unconsolidated water bottom.

Similar to the elastic case the Green's function for the reference splits into a direct part and
a water column part: G0 = Gd0 +Gwc0

We investigate the J operator containing the reference Green's operator in equation (25). An
explicit form of this operator is given by,

J(k, ω) =
i

ρ1ω2Θ
eiν1(zs−zwb)

(
Ṕ P̀+Z2ŚS̀
η2
2−k2 2ρ2kν1η2β

2
2(1 + Z2)

ρ2ν1β
2
2(k2 − η2

2)(1 + Z2) Ṕ P̀+Z2ŚS̀
kν2

)
, (26)

where Θ = 1 + P̀ ṔZ2 and Z = eiν1(zs−zwb) .
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( A complete derivation of the operator J(k, ω) can be found in Matson (1997 ) appendix D,
equation D.60)

The grave and acute accents are a convention from Aki and Richards (2002) and pertain to
the propagation direction of the wave�eld. The( )́ accent indicates an upward and the (̀ )
denotes a downward propagation. For example, Ṕ P̀ indicates a re�ection coe�cient for a
P-wave that starts propagating up towards a re�ector, and after re�ecting o� from a re�ector
continues its journey downwards still as a P-wave. Alternatively, in this report we may refer
to this type of re�ection, as an up-down type.

Table 1 shows each variable in J(k, ω) and their description. The vertical wave numbers for

Table 1: Elements in the J- matrix

Variable Description

Ṕ P̀ re�ection coe�cient for an up-down P-wave

P̀ Ṕ re�ection coe�cient for a down-up P-wave

ŚS̀ re�ection coe�cient for an up-down S-wave

ν1 vertical P-wave number for the upper half-space

ν2 vertical P-wave number for the lower half-space

η2 vertical S-wave number for the lower half-space

k horizontal wave number

ω temporal frequency

β2 shear wave velocity of the lower-halfspace

ρ1 density of the upper half-space

ρ2 density of the lower half-space

zs depth of source

zwb depth of waterbottom

P and S-waves are obtained as follows

ν1 = sgn(ω)

√
ω2

α2
1

− k2, (27)

ν2 = sgn(ω)

√
ω2

α2
2

− k2, (28)

and η2 = sgn(ω)

√
ω2

β2
2

− k2, (29)

where α and β are P-wave and S-wave velocities respectively.

α =

√
κ+ 4/3µ

ρ
, and β =

√
µ

ρ
(30)
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where κ is the bulk modulus, which is one of the elastic moduli that describe the physical
properties of a substance; it describes the ratio of pressure to the change in the volume due
to that pressure. µ is the shear modulus (explained in the introduction) and ρ is the density.
Indices refer to the orientation of half-spaces in contact: 1 indicates upper and 2 is for lower
halfspace; so, for example, α2 refers the the P-wave velocity of the lower halfspace.
We start our study by taking a closer look at the Ṕ P̀ re�ection coe�cient that appears directly
in the J-matrix and has an explicit dependence on the shear wave velocity of the ocean bottom
(β2),

Ṕ P̀ =
ω4ρ1ν2
β2
2

+ β2
2ρ2ν1(−(η2

2 − k2)2 + 4η2ν2k
2)

ω4ρ1ν2
β2
2

+ β2
2ρ2ν1((η2

2 − k2)2 + 4η2ν2k2)
. (31)

The derivation of this re�ection coe�cient can be found in Matson (1997 ). After some
algebraic operations, this re�ection coe�cient ( from here on we will refer to this re�ection
coe�cient as (Ṕ P̀ )ae to indicate that it pertains to an acoustic halfspace over an elastic
halfspace.)can be written as,

(Ṕ P̀ )ae =
ω4(ρ1ν2 − ρ2ν1) + 4β2

2ρ2ν1ω
2k2 − 4β4

2ρ2ν1k
4 + 4ρ2ν1ν2

√
ω2k4β6

2 − k6β8
2

ω4(ρ1ν2 + ρ2ν1)− 4β2
2ρ2ν1ω2k2 + 4β4

2ρ2ν1k4 + 4ρ2ν1ν2

√
ω2k4β6

2 − k6β8
2

, (32)

which after some more algebraic manipulations can be re-written as,

(Ṕ P̀ )ae = ρ1ν2−ρ2ν1
ρ1ν2+ρ2ν1

(33)

+ 8ρ1ν1ρ2ν2β2
2k

2(ω2−β2
2k

2+ρ2ν1β2

√
ω2−β2

2k
2/ρ1)

ω4(ρ1ν2+ρ2ν1)2−(1+
ρ2ν1
ρ1ν2

)(4ρ1ν1ρ2ν2β2
2k

2)(ω2−β2
2k

2−ν2β2

√
ω2−β2

2k
2)

= ρ1ν2−ρ2ν1
ρ1ν2+ρ2ν1

+ ∆Ṕ P̀ .

The �rst term can be instantly recognized as the Ṕ P̀ re�ection coe�cient of two acoustic
half-spaces in contact. We refer to this as (Ṕ P̀ )aa. The second term could be regarded as a
correction term that can be added to the acoustic re�ection coe�cient to take it to an elastic
re�ection coe�cient. Please observe that in the special case that β2 is identically zero, this
re�ection coe�cient will shrink down to,

(Ṕ P̀ )ae|(β2=0) =
ρ1ν2 − ρ2ν1

ρ1ν2 + ρ2ν1
= (Ṕ P̀ )aa, (34)

which is the Ṕ P̀ re�ection coe�cient for two acoustic halfspaces in contact.

In a similar fashion, the P̀ Ṕ re�ection coe�cient (Matson, 1997 ) that is given by,

P̀ Ṕ =
−ω4ρ1ν2

β2
2

+ β2
2ρ2ν1((η2

2 − k2)2 + 4η2ν2k
2)

ω4ρ1ν2
β2
2

+ β2
2ρ2ν1((η2

2 − k2)2 + 4η2ν2k2)
, (35)

can be algebraically manipulated to obtain,

(P̀ Ṕ )ae =
−ω4(ρ1ν2 − ρ2ν1)− 4β2

2ρ2ν1ω
2k2 + 4β4

2ρ2ν1k
4 + 4ρ2ν1ν2

√
ω2k4β6

2 − k6β8
2

ω4(ρ1ν2 + ρ2ν1)− 4β2
2ρ2ν1ω2k2 + 4β4

2ρ2ν1k4 + 4ρ2ν1ν2

√
ω2k4β6

2 − k6β8
2

, (36)
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Figure 4: (Ṕ P̀ )ae re�ection coe�cient for two halfspaces in contact.The parametes for the upper(water)

and lower halfspaces are: ρ1 = 1000kg/m3, α1 = 1500m/sec, β1 = 0m/sec; ρ2 = 1730kg/m3 and

α2 = 1650m/s and β2 is varying between 0 to 800 m/sec (see the legend box). '+' is associated

with β2 = 0.

or

(P̀ Ṕ )ae = −(ρ1ν2−ρ2ν1)
ρ1ν2+ρ2ν1

(37)

+ −8ρ1ν1ρ2ν2β2
2k

2(ω2−β2
2k

2+ρ2ν1β2

√
ω2−β2

2k
2/ρ1)

ω4(ρ1ν2+ρ2ν1)2−(1+
ρ2ν1
ρ1ν2

)(4ρ1ν1ρ2ν2β2
2k

2)(ω2−β2
2k

2−ν2β2

√
ω2−β2

2k
2)

= −(ρ1ν2−ρ2ν1)
ρ1ν2+ρ2ν1

+ ∆P̀ Ṕ . (38)

Once again, we can recognize the �rst term as the P̀ Ṕ re�ection coe�cient of two acoustic
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halfspaces in contact,

(P̀ Ṕ )ae|(β2=0) =
−ρ1ν2 + ρ2ν1

ρ1ν2 + ρ2ν1
= (P̀ Ṕ )aa. (39)

4 Numerical results

To better understand the e�ect of low shear wave velocity in the ocean bottom, we simulated
two halfspaces in contact. For the upper halfspace, we used the density and velocites of
water(ρ1 = 1000kg/m3, vp = α1 = 1500m/sec, and β1 = 0m/sec) and for the purpose of this
study, for the lower half-space parameters, we used a density of 1730kg/m3 which pertains to
that of �uid mud. The lower halfspace starting value for the P-wave velocity is α2 = 1650m/s.
We then gradually decreased the S-wave velocity β2 of the lower halfspace from 800m/s to
0m/s in steps of 100. Finally, we plotted each re�ection coe�cient as a function of incident
angle. The results are shown in �gures 4 and 5.

To test the robustness of the results for varying water bottom density(ρ2) and P-wave
velocity(α2), we repeated the experiment with densities of 1500 kg/m3 and 1900 kg/m3

while keeping the P-wave velocity at 1650 m/sec and then another set of tests with P-wave
velocities of 1550 m/sec and 1750 m/sec with a �xed density of 1730kg/m3 (all the param-
eters pertain to the lower halfspace )for both the (Ṕ P̀ )ae and (P̀ Ṕ )ae re�ection coe�cients.
Those results are shown in �gures 6 , 7, 8 , 9, 10, 11, 12, and 13.

5 Discussion

The results presented in �gures 4 to 13 are the graphs of the (Ṕ P̀ )ae and (P̀ Ṕ )ae re�ection
coe�cients as a function of incidnet angle. In all of these plots, it can be observed that in
a relatively small regime of angles (i.e θ < 10degrees) the (Ṕ P̀ )ae and (P̀ Ṕ )ae re�ection
coe�cients with di�erent β2 values, seem to coincide with each other and with their acoustic
re�ection coe�cient counterpart. This could mean that in that vicinity of angles, the elastic
re�ection coe�cient can be approximated as the acoustic re�ection coe�cient. For larger
angles, the correction terms(see equations 34 and 38) need to be taken into account. Also,
the re�ection coe�cients associated with β2 values of 100 and 200 have the least deviation
from the re�ection coe�cient with zero β2 value(i.e. the acoustic re�ection coe�cient).
From this, we can argue that the re�ection coe�cients corresponding to those β2 values are
relatively more accurate approximations to the acoustic re�ection coe�cient. On the other
hand, in the (Ṕ P̀ )ae plots, the largest deviations from the acoustic re�ection coe�cient is
observed in the angle interval of (50 < θ < 80) degrees which implies that in this regime the
correction term must be taken into account.
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Figure 5: (P̀ Ṕ )ae re�ection coe�cient for two halfspaces in contact, as a function of incident angle.The

parametes for the upper(water) and lower halfspaces are: ρ1 = 1000kg/m3, α1 = 1500m/sec,
β1 = 0m/sec; ρ2 = 1730kg/m3 and α2 = 1650m/s and β2 is varying between 0 to 800 m/sec

(see the legend box). '+' is associated with β2 = 0.

6 Conclusions

In this report, we study a quasi-elastic ocean bottom and investigate how its low shear velocity
will e�ect the procedure for elastic ocean bottom multiple removal devised by as the ocean
�oor goes through a transition from elastic to acoustic. Eliminating ocean bottom multiples
can help avoiding misinterpretation of these events as primary re�ections. It can also make a
di�erence in AVO analysis, and it is a prerequisite for most imaging and inversion methods.
While there exists theories and algorithms based on the inverse scattering series (ISS) to
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Figure 6: (Ṕ P̀ )ae re�ection coe�cient for two halfspaces in contact, as a function of incident angle. The

parametes for the upper(water) and lower halfspaces are: ρ1 = 1000kg/m3, α1 = 1500m/sec,
β1 = 0m/sec; ρ2 = 1900kg/m3 and α2 = 1650m/s and β2 is varying between 0 to 800 m/sec

(see legend box). '+' is associated with β2 = 0.

eliminate, in a data-driven manner, ocean bottom multiples from an elastic ocean bottom,
the practical challenge of proper coupling of the receivers to the ocean bottom still remains
and it intensi�es where the ocean �oors are made of substances that are not rigid, e.g. mud,
sediments, etc. This leads to shear wave component measurements that are weak or even
missing, due to low shear modulus values in unconsolidated ocean �oors. To adapt the ISS-
based elastic ocean bottom multiple removal procedure for the quasi-elastic ocean bottoms,
we focus on the operator J(k, ω) which is the machinery behind generating nth order ocean
bottom multiple from the 1st order data and the (n−1)th order ocean bottom multiple. Among
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Figure 7: (Ṕ P̀ )ae re�ection coe�cient for two halfspaces in contact, as a function of incident angle. The

parametes for the upper(water) and lower halfspaces are: ρ1 = 1000kg/m3, α1 = 1500m/sec,
β1 = 0m/sec; ρ2 = 1500kg/m3 and α2 = 1650m/s and β2 is varying between 0 to 800 m/sec(see

legend box). '+' is associated with β2 = 0.

the elements of J(k, ω) we focus on two re�ection coe�cients that have explicit dependence
on the shear wave velocity of the ocean bottom, namely Ṕ P̀ and P̀ Ṕ . The analytical tests
on these re�ection coe�cients showed that each of these re�ection coe�cients can be written
as an acoustic re�ection coe�cient plus a correction term that vanishes in the limit of zero
ocean bottom shear wave velocity.

Numerical results shows that all the elastic re�ection coe�cients are in good agreement with
each other and with their acoustic re�ection counterpart, in an angle interval of zero to 10
degrees, regardless of the given value for the shear wave velocity at the ocean bottom which
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Figure 8: (P̀ Ṕ )ae re�ection coe�cient for two halfspaces in contact, as a function of incident angle. The

parametes for the upper(water) and lower halfspaces are: ρ1 = 1000kg/m3, α1 = 1500m/sec,
β1 = 0m/sec; ρ2 = 1900kg/m3 and α2 = 1650m/s and β2 is varying between 0 to 800 m/sec(see

legend box). '+' is associated with β2 = 0.

could imply that in that regime, the acoustic-over-elastic P-wave re�ection coe�cient can be
approximated as the acoustic-over-acoustic P-wave re�ection coe�cient.

A similar study is being conducted on the ŚS̀ re�ection coe�cient. Numerical tests are in
progress to study the correction terms ∆Ṕ P̀ and ∆P̀ Ṕ , in 34 and 38 in their sensitivity
towards the elastic to acoustic transition(i.e. β2 → 0 ).
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Figure 9: (P̀ Ṕ )ae re�ection coe�cient for two halfspaces in contact, as a function of incident angle . The

parametes for the upper(water) and lower halfspaces are: ρ1 = 1000kg/m3, α1 = 1500m/sec,
β1 = 0m/sec; ρ2 = 1500kg/m3 and α2 = 1650m/s and β2 is varying between 0 to 800 m/sec(see

legend box). '+' is associated with β2 = 0.
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Figure 10: (Ṕ P̀ )ae re�ection coe�cient for two halfspaces in contact, as a function of incident angle. The

parametes for the upper(water) and lower halfspaces are: ρ1 = 1000kg/m3, α1 = 1500m/sec,
β1 = 0m/sec; ρ2 = 1730kg/m3 and α2 = 1550m/s and β2 is varying between 0 to 800m/sec(see

legend box). '+' is associated with β2 = 0.
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Incorporating an angle dependent source signature into an Inverse Scattering

Series free surface multiple elimination algorithm: Initial analysis and

formulation

J. Yang and A. B. Weglein

Abstract

The inverse scattering free-surface multiple elimination algorithm is extended from an

isotropic point source to a general source, which is an unknown array of air-guns with radi-

ation pattern. This extended FSME method is a more general multidimensional free-surface

multiple elimination method without any subsurface information. It can reduce to the current

FSME method as the general source reduces to a point source. This extended FSME algorithm

requires the deghosted data D′1 and a general source signature ρ(k, ω), which is a function of

wavenumber k and temporal frequency ω. The source signature can be solved using the refer-

ence wave�eld P0 in f -k domain. The wavenumber k represents the amplitude variations with

takeo� angle from the source radiation pattern.

1 Introduction

Multiple removal is a classic and long-standing problem in marine exploration seismology.
The inability to remove multiples can lead to multiples misinterpreted as or interfering with
primaries. Many data processing methods are based on the fundamental assumption that
seismic data contains primaries only. Therefore, e�ective demultiple algorithms are required
in marine seismic data processing.

Various methods have been developed in the last three decades to either attenuate or eliminate
free-surface multiples which are dominant in marine case, especially in the water bottom with
a high velocity contrast. The inverse scattering series (ISS) free-surface multiple elimination
method (FSME) is an important multidimensional free-surface demultiple method, that does
not require any subsurface information and most importantly it preserves primary energy (e.g.,
Carvalho, 1992; Araújo, 1994; Weglein et al., 1997). A crucial assumption in this method,
however, is that the source is an isotropic point source, i.e., no variation of amplitude or phase
with angle. In practice, source array is usually applied in seismic exploration to increase the
power of the source, broaden the bandwidth and cancel the random noise. The source array
has radiation pattern and the radiation pattern has a profound e�ect on AVO (Gassaway
et al., 1986) and large marine air-gun arrays produce signi�cant variations of the source
signature (Loveridge et al., 1984). The variant source signature due to the source array will
a�ect the results of free-surface and internal multiples elimination. Therefore, to extend the
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FSME algorithm to a general source with radiation pattern is the goal of this report, which
is organized as follows: In the next section, the inverse scattering series is constructed for a
general source ρ using the reference wave�eld P0. In the third section, the FSME subseries is
derived from the inverse scattering series for removing the free-surface multiples. In the forth
section, we formulate and solve the general angle dependent source signature ρ(k, ω) using
the direct reference wave�eld P d0 and then extend the ISS FSME algorithm to source array
by incorporating the angle dependent source signature. Finally, we give some analysis on the
extended FSME method.

2 Inverse Scattering Series

Starting from the two basic di�erential equations (Weglein et al., 2003), which govern wave
propagation in actual medium and reference medium

LP = ρ (1)

L0G0 = δ (2)

where L, L0 are respectively the di�erential operators in actual and reference medium. P is the
total wave�eld in the actual medium, which is generated by an arbitrary source distribution
ρ and G0 is the Green's function in the reference medium. We de�ne the perturbation as
V = L0 − L. The Lippmann-Schwinger equation is given by

P = P0 +G0V P (3)

where P0 is the reference wave�eld. It is the response of the reference medium to a real
source, which is an array of impulsive point sources, while G0 is an impulse response. Iterating
equation 3 back into itself produces the Born series

P = P0 +G0V P0 +G0V G0V P0 + · · · (4)

When convergent, the forward scattering series gives a solution to the total wave�eld P in
terms of the reference wave�eld P0, reference Green's function G0, and the perturbation
operator V . In other words, the forward series predicts the total wave�eld P by summing
an in�nite amount of terms involving interactions between the reference wave�eld P0 and the
perturbation V (e.g., Stolt and Weglein, 1985; Weglein et al., 2003).

The scattered wave�eld ψs = P − P0 is

ψs = G0V P0 +G0V G0V P0 +G0V G0V G0V P0 + · · ·
= (ψs)1 + (ψs)2 + (ψs)3 + · · · (5)

where (ψs)n is the portion of ψs that is n
th order in V . The measured value of ψs is the data

D = (ψs)ms, which means the data on the measurement surface. Expanding V as a series in
orders of D yields,

V = V1 + V2 + V3 + · · · (6)
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Figure 1: The reference Green's function G0 consists of two parts, G0 = Gd0 +Gfs0 . Gd0 is the direct Greens'

function and Gfs0 is the additional part of the Greens' function caused by the presence of the free

surface.

where Vn is the portion of V that is nth order in the data D. Substituting equation 6 into
equation 5 and setting terms of equal order of the data equal yields,

D =[G0V1P0]ms (7)

0 =[G0V2P0]ms + [G0V1G0V1P0]ms (8)

0 =[G0V3P0]ms + [G0V1G0V2P0]ms
+ [G0V2G0V1P0]ms + [G0V1G0V1G0V1P0]ms (9)

...

To solve these equations, the measured data D, the reference Green's function G0 and the
reference wave�eld P0 are required. Following Weglein et al. (1997; 2003), equation 7 is the
linear or Born form and allows V1 to be determined from the data D. V2 is then calculated
from V1 with equation 8. Equation 9 determines V3 from V1 and V2, and continuing in the
same manner to compute Vn. Hence the entire series for the perturbation operator V =

∑
Vn

is constructed starting with the data D.

3 Free-surface multiple elimination subseries

The free-surface multiple elimination subseries is constructed using the inverse scattering
series in Weglein et al. (1997; 2003). As we know, if a given term in the forward scattering
series creates a certain type of data, that term in the inverse scattering series removes that
type of data, e.g., if there is no free surface, there are no ghosts and free-surface multiples
in the data. Hence, the reference Green's function G0 must consist of two contributions as
shown in �gure 1: the direct arrival Gd0 and its ghost Gfs0 , where Gfs0 acts to create (in the
forward series) and remove (in the inverse series) ghosts and free-surface multiples. Similarly,
the reference wave�eld P0 also consists of two parts in terms of the two parts of G0, i.e.,
P0 = P d0 + P fs0 .
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The G0 and P0 factors in equation 7 correspond to direct waves and ghosts for the source and
the receiver. When they are replaced by Gd0 and P d0 , the inverse scattering series becomes

Gd0V1P
d
0 = D′1 (10)

Gd0V2P
d
0 = −Gd0V1G0V1P

d
0 (11)

Gd0V3P
d
0 = −Gd0V1G0V2P

d
0 −Gd0V2G0V1P

d
0

−Gd0V1G0V1G0V1P
d
0 (12)

...

Note: D′1 is the source and receiver deghosted data and also the �rst term in the series for
data without free-surface e�ects.

The portion of V2 due to the presence of the free-surface V
′

2 is determined from V1 by replacing

the inner Green's function G0 with Gfs0 in equation 11,

Gd0V
′

2P
d
0 = −Gd0V1G

fs
0 V1P

d
0 (13)

And then V ′3 is determined from V1 and V ′2 in equation 12,

Gd0V
′

3P
d
0 = −Gd0V1G

fs
0 V

′
2P

d
0 −Gd0V ′2Gfs0 V1P

d
0

−Gd0V1G
fs
0 V1G

fs
0 V1P

d
0 (14)

Using equation 13, the equation 14 can be rewritten as

Gd0V
′

3P
d
0 = −Gd0V1G

fs
0 V

′
2P

d
0 (15)

In general,

Gd0V
′
nP

d
0 = −Gd0V1G

fs
0 V

′
n−1P

d
0 (16)

Consequently, the deghosted re�ection data with free-surface multiples eliminated are

D′ =
∞∑
n=1

D′n =
∞∑
n=1

Gd0V
′
nP

d
0 (17)

4 Inverse scattering series FSME algorithm for source array

Using the FSME subseries, the FSME algorithm is extended for source array with radiation
pattern. The algorithm requires the deghosted data D′1 and the direct reference wave�eld P

d
0 .

The Greens' theorem can give the deghosted data D′1 and the reference wave�eld P0 but not
P d0 when we choose the di�erent reference medium and volume.

Note: The reference wave�eld P0, which is the response of the reference medium to the real
general source, also consists of two contributions: the direct reference wave�eld P d0 and its

ghost P fs0 propagating from the source up to the free-surface and being re�ected down to the

receivers: P0 = P d0 + P fs0 .
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When we choose (1) the reference medium is a half space of air over a half space of water, (2)
the volume V is below the measurement surface, (3) the source distribution is located between
the measurement surface and the free surface (i.e., outside V ), and (4) the observation position
~r is in the volume V , the reference wave�eld P0 can be obtained using Green's theorem by
measuring the total wave�eld P and its normal derivative (Appendix A) as

P0(~r, ~rs, ω) =
∫
ms
dS′ n̂ · [P (~r ′, ~rs, ω)∇ ′G0(~r ′, ~r, ω)−G0(~r ′, ~r, ω)∇ ′P (~r ′, ~rs, ω)] (18)

The direct reference wave�eld P d0 can be obtained generally by deghosting the source side
of the reference wave�eld P0. For some special cases, it can be solved directly from P0 by
dividing a factor and we will discuss it later.

When we choose (1) the reference medium is a whole space of water, (2) the volume V is
between the measurement surface and the free surface, and (3) the source distribution ~r′ and
the observation position ~r are in the volume V , the receiver side of the scattered data is
deghosted using the deghosting algorithm based on Green's theorem (Zhang, 2007) as

P ′s(~r, ~rs, ω) =
∫
ms
dS′ n̂ · [P (~r ′, ~rs, ω)∇ ′G0(~r ′, ~r, ω)−G0(~r ′, ~r, ω)∇ ′P (~r ′, ~rs, ω)] (19)

where P ′s is the receiver side deghosted data and G0 is the causal Greens' function in the
whole space of water. Using the theorem of wave�eld reciprocity , exchanging the receiver
coordinate with the source coordinate, the source side is also deghosted through applying
the same algorithm. Jim Mayhan, a fellow graduate student in our group, can provide the
reference wave�eld P d0 and the deghosted D′1 data towards testing this algorithm.

The source array can be described as a superposition of point sources, whose spatial distri-
bution can be described by a function ρ:

ρ = ρ(~r′, ~rs, ω) (20)

Thus, the direct reference wave�eld P d0 can be expressed as the integral of the causal reference
Green's function Gd0 over the whole range occupied by the general source ρ (Morse and Fesh-
bach, 1953) as

P d0 (~r, ~rs, ω) =
∫
d~r′ρ(~r′, ~rs, ω)Gd0(~r, ~r′, ω) (21)

where ~r′, ~rs and ~r represent respectively the source distribution, the source array locator and
the observation position as shown in �gure 2.

Due to the translational symmetry of the source array, its geometry is invariant to the source
array locator ~rs, and the source distribution ρ only cares about the di�erence between the
source array locator ~rs and the speci�c air gun ~r′ as shown in �gure 3, which means that the
source distribution ρ doesn't care about the speci�c ~r′ and ~rs. In other words, for a given
source array, the source distribution is the same about the source array locator ~rs. Thus,
the source array is only a function of the relative distance to the source array position as
ρ(~r′, ~rs, ω) = ρ(~r′ − ~rs, ω). The direct reference wave�eld P d0 becomes

P d0 (~r, ~rs, ω) =
∫
d~r′ρ(~r′ − ~rs, ω)Gd0(~r, ~r′, ω) (22)

161



New Students M-OSRP10

Figure 2: The source array can be described as a function ρ(~r′, ~rs, ω).

Figure 3: The source array ρ only cares about the di�erence between the source array locator ~rs and the

speci�c air gun point ~r′ as the source moving.
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Note: If the source array reduces to an isotropic point source, the source distribution ρ(~r′ −
~rs, ω) becomes A(ω)δ(~r′ − ~rs), where A(ω) is the point source signature.

When we change the coordinate, let ~r′′ = ~r′ − ~rs, P d0 can be rewritten as

P d0 (~r, ~rs, ω) =
∫
d~r′′ρ(~r′′, ω)Gd0(~r, ~r′′ + ~rs, ω)

where ~r′′ describes the source distribution relative to ~rs, and ~r
′′ is invariant as the source

moving. Recalling ~r′′ as ~r′, the direct reference wave�eld P d0 becomes

P d0 (~r, ~rs, ω) =
∫
d~r′ρ(~r′, ω)Gd0(~r, ~r′ + ~rs, ω) (23)

Consider a simple 2D case, we assume that the source array only distributes laterally and
locates at depth εs below the free surface. In other words, the source array as air guns are
only at the x direction. x′ gives the distance from the source array locator to the individual
air gun. Equation 23 becomes

P d0 (x, z, xs, εs, ω) =
∫
dx′ρ(x′, ω)Gd0(x, z, x′ + xs, εs, ω) (24)

For this case, the direct reference wave�eld P d0 can be solved from the reference wave�eld
P0 as P d0 = P0/(1 − e2iqsεs). Using the bilinear form of Green's function and then Fourier
transforming over xs, we obtain the relationship between ρ and P d0 (Appendix B) as

P d0 (x, z, ks, εs, ω) = ρ(ks, ω)
eiqs|z−εs|

2iqs
eiksx (25)

where k2
s + q2

s = ω2/c2
0 and z > εs.Thus, the general source signature, in other words, the

angle dependent source signature ρ(ks, ω) can be calculated in f -k domain using the reference
wave�eld P d0 . As we know, in the space domain, a straightforward picture of physics tells
us that the general source signature ρ is a function of source distribution ~r′ and temporal
frequency ω as we discussed in �gure 2. After Fourier transformation, the angle dependent
source signature ρ becomes a function of horizontal wavenumber k and temporal frequency ω
in the f -k domain. The variable ks represents the amplitude variations of the general source
signature with angle due to the source array.

The FSME algorithm is extended to source array with radiation pattern incorporating the
angle dependent source signature. The procedure of the extended FSME algorithm is as
follows:

(1) The data D is calculated by subtracting the reference wave�eld P0 from the total wave�eld
P on the measurement surface.

(2) The data D is deghosted for both source and receiver sides using equation 19 (Zhang,
2007).

(3) Using the angle dependent source signature ρ(k, ω) in equation 25, the projection of V1

on the measurement surface is expressed from the �rst-order equation 10 as

V1(kg,−qg,−ks,−qs, ω) =
2iqg
e−iqgεg

D′1(kg, zg, ks, εs, ω)
ρ(ks, ω)

2iqs
e−iqsεs

(26)
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(4) Substituting V1 into equation 16, the �nal expression for the deghosted and free-surface
demultipled data D′ in terms of the deghosted data D′1 and the angle dependent source
signature ρ(k, ω) as follows:

D′n(kg, ks, ω) =
1

iπρ0

∫
dk

ρ(k, ω)
D′1(kg, k, ω)qeiq(εg+εs)D′n−1(k, ks, ω) (27)

and

D′(kg, ks, ω) =
∞∑
n=1

D′n(kg, ks, ω) (28)

with kg, ks and ω representing the wave-numbers along the source and receiver axes and the
angular frequency, respectively. ρ0 is the reference density and ρ(k, ω) is the general source
signature, which is a function of wavenumber k and temporal frequency ω in the f -k domain.
εg and εs are the depth of the receiver and source below the free surface, respectively and q
is the obliquity factor given by:

q = sgn(ω)

√
ω2

c2
0

− k2 (29)

Using the FSME subseries, the FSME algorithm is extended by incorporating the angle de-
pendent source signature ρ(k, ω), which includes the e�ects of the source directivity. The
extended FSME method requires the deghosted data D′1 and the angle dependent source
signature ρ(k, ω) and does not need any subsurface information.

Details of the derivation for equation 27 can be found in Appendix C.

5 Analysis

The extended FSME algorithm should be consistent with the current FSME algorithm as the
source array reduces to a point source. Let's consider the simplest case: The source array
reduces to an isotropic point source A(ω), then the source distribution ρ(~r′ − ~rs, ω) becomes
A(ω)δ(~r′ − ~rs) and the direct reference wave�eld P d0 becomes A(ω)Gd0. The whole procedure
of FSME algorithm is the same as the one we talked in the last section. The di�erence is that
the expression of V1 in the step 3 becomes

V1(kg,−qg,−ks,−qs, ω) =
2iqg
e−iqgεg

D′1(kg, zg, ks, εs, ω)
A(ω)

2iqs
e−iqsεs

(30)

Substituting it into equation 16, equation 27 becomes

D′n(kg, ks, ω) =
1

iπρ0A(ω)

∫
dkD′1(kg, k, ω)qeiq(εg+εs)D′n−1(k, ks, ω) (31)

which is the current FSME algorithm derived in Carvalho (1992).
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Second, if all the air guns are the same, which means that they have the same source signature
ρ(ω), the general source signature ρ(k, ω) in equation 48 becomes

ρ(k, ω) = ρ(ω)
∫ a

−a
dx′e−ikx

′
= ρ(ω)

2
k

sin(ka) (32)

where we assume that the range of the source array is from −a to a. Then equation 27 reduces
to

D′n(kg, ks, ω) =
1

iπρ0ρ(ω)

∫
dk

2
k sin(ka)

D′1(kg, k, ω)qeiq(εg+εs)D′n−1(k, ks, ω) (33)

where ρ0 is the reference density and ρ(ω) is the source wavelet for each air gun.

From the above analysis, we can see that the extended FSME algorithm can deal with more
general cases of sources with or without radiation pattern.

6 Conclusion

The FSME algorithm is extended by incorporating a more general source signature ρ(k, ω),
which includes the e�ects of the source directivity. The wavenumber k describes the amplitude
variations with angle in f -k domain. The extended FSME method requires the deghosted
data D′1 and the angle dependent source signature ρ(k, ω), which can be solved from the
reference wave�eld P d0 . It doesn't require any subsurface information. One of its special
cases is the current FSME algorithm as the source array reduces to an isotropic point source.
Therefore, the extended FSME algorithm is a more general and e�ective multidimensional
free-surface multiple elimination method, which can accommodate sources with or without
radiation pattern.
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Appendices

A Estimation of reference wave�eld P0

The e�ective source signature or reference wave�eld P0 is derived in Weglein and Secrest
(1990), in which they derive two equations: the Lippmann-Schwinger equation and Green's
second identity. Comparing the two equations gives an equation for the reference wave�eld
P0 as a function of measured data and a reference medium Green function.

The acoustic wave equation with constant density for the total �eld P created by a general
source ρ(~r, ~rs, t) at the e�ective position ~rs in frequency domain is(

∇2 +
ω2

c2(~r)

)
P (~r, ~rs, ω) = ρ(~r, ~rs, ω) (34)

Characterizing c(~r) in terms of c0 and the variation index of refraction α(~r) gives

1
c2(~r)

=
1
c2

0

(1− α(~r)) (35)

Substituting equation 35 into equation 34 gives(
∇2 +

ω2

c2
0

)
P (~r, ~rs, ω) = ρ(~r, ~rs, ω) +

ω2

c2
0

α(~r)P (~r, ~rs, ω) (36)

Converting equation 36 from a partial di�erential equation into an integral equation (the
Lippmann-Schwinger equation) gives

P (~r, ~rs, ω) =
∫
d~r ′ρ(~r′, ~rs, ω)G0(~r, ~r ′, ω) +

∫
∞
d~r ′G0(~r, ~r ′, ω)

ω2

c2
0

α(~r ′)P (~r ′, ~rs, ω) (37)

Choosing a causal Green function G+
0 in the Lippmann-Schwinger equation gives a causal

solution P (~r, ~rs, ω):

P (~r, ~rs, ω) =
∫
d~r ′ρ(~r′, ~rs, ω)G+

0 (~r, ~r ′, ω) +
∫
∞
d~r ′G+

0 (~r, ~r ′, ω)
ω2

c2
0

α(~r ′)P (~r ′, ~rs, ω) (38)

Substituting P and G0 into Green's theorem gives∫
V
d~r ′[P (~r ′, ~rs, ω)∇′2G0(~r ′, ~r, ω)−G0(~r ′, ~r, ω)∇′2P (~r ′, ~rs, ω)] =∮

S
dS′ n̂ · [P (~r ′, ~rs, ω)∇ ′G0(~r ′, ~r, ω)−G0(~r ′, ~r, ω)∇ ′P (~r ′, ~rs, ω)] (39)

where V is the hemispheric volume below the measurement surface, and S is the hemisphere's
surface. Substituting equation 36 and its corresponding reference medium Green function
di�erential equation into equation 39 gives∮

S
dS′ n̂ · [P (~r ′, ~rs, ω)∇ ′G0(~r ′, ~r, ω)−G0(~r ′, ~r, ω)∇ ′P (~r ′, ~rs, ω)]
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=
∫
V
d~r ′[P (~r ′, ~rs, ω) ∇′2G0(~r ′, ~r, ω)︸ ︷︷ ︸

(−ω2/c20)G0(~r ′,~r,ω)+δ(~r ′−~r)

−G0(~r ′, ~r, ω) ∇′2P (~r ′, ~rs, ω)︸ ︷︷ ︸
(−ω2/c20)P (~r ′,~rs,ω)+ω2

c20
α(~r ′)P (~r ′,~rs,ω)+ρ(~r ′,~rs,ω)

]

=
∫
V
d~r ′[−ω

2

c2
0

G0(~r ′, ~r, ω)P (~r ′, ~rs, ω)︸ ︷︷ ︸
cancels

+δ(~r ′ − ~r)P (~r ′, ~rs, ω)

+
ω2

c2
0

P (~r ′, ~rs, ω)G0(~r ′, ~r, ω)︸ ︷︷ ︸
cancels

−ω
2

c2
0

α(~r ′)P (~r ′, ~rs, ω)G0(~r ′, ~r, ω)

−ρ(~r ′, ~rs, ω)G0(~r ′, ~r, ω)]

=
∫
V
d~r ′[P (~r ′, ~rs, ω)δ(~r ′ − ~r)− ω2

c2
0

α(~r ′)P (~r ′, ~rs, ω)G0(~r ′, ~r, ω)

−ρ(~r ′, ~rs, ω)G0(~r ′, ~r, ω)] (40)

If we choose ~r ∈ V , the general source ρ is zero because it is outside of the volume, the
equation 40 will be∮

S
dS′ n̂ · [P (~r ′, ~rs, ω)∇ ′G0(~r ′, ~r, ω)−G0(~r ′, ~r, ω)∇ ′P (~r ′, ~rs, ω)]

=
∫
V
d~r ′[P (~r ′, ~rs, ω)δ(~r ′ − ~r)︸ ︷︷ ︸

P (~r,~rs,ω)

−ω
2

c2
0

α(~r ′)P (~r ′, ~rs, ω)G0(~r ′, ~r, ω)

− ρ(~r ′, ~rs, ω)︸ ︷︷ ︸
0

G0(~r ′, ~r, ω)]

= P (~r, ~rs, ω)−
∫
V
d~r ′

ω2

c2
0

α(~r ′)P (~r ′, ~rs, ω)G0(~r ′, ~r, ω) (41)

If the support for α ∈ V , rearranging equation 41 gives

P (~r, ~rs, ω) =
∫
V
d~r ′G0(~r ′, ~r, ω)

ω2

c2
0

α(~r ′)P (~r ′, ~rs, ω)

+
∮
S
dS′, n̂ · [P (~r ′, ~rs, ω)∇ ′G0(~r ′, ~r, ω)−G0(~r ′, ~r, ω)∇ ′P (~r ′, ~rs, ω)]

=
∫
∞
d~r ′G0(~r ′, ~r, ω)

ω2

c2
0

α(~r ′)P (~r ′, ~rs, ω)

+
∮
S
dS′ n̂ · [P (~r ′, ~rs, ω)∇ ′G0(~r ′, ~r, ω)−G0(~r ′, ~r, ω)∇ ′P (~r ′, ~rs, ω)] (42)

In equation 42 the surface integral involves actual pressure measurements and their vertical
derivatives. For consistency with equation 38 choose a causal Green function which gives

P (~r, ~rs, ω) =
∫
∞
d~r ′G+

0 (~r ′, ~r, ω)
ω2

c2
0

α(~r ′)P (~r ′, ~rs, ω)
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+
∮
S
dS′ n̂ · [P (~r ′, ~rs, ω)∇ ′G+

0 (~r ′, ~r, ω)−G+
0 (~r ′, ~r, ω)∇ ′P (~r ′, ~rs, ω)] (43)

Comparing the Lippmann-Schwinger equation (38) and Green's theroem (43) gives an equa-
tion for the e�ective source signature or reference wave�eld P0:

P0(~r, ~rs, ω) =
∫
V
d~r ′ρ(~r ′, ~rs, ω)G0(~r ′, ~r, ω)

=
∮
S
dS′ n̂ · [P (~r ′, ~rs, ω)∇ ′G+

0 (~r ′, ~r, ω)

−G+
0 (~r ′, ~r, ω)∇ ′P (~r ′, ~rs, ω)] (44)

equation 44 is one form of the �triangle relation� relating the pressure wave�eld P (~r ′, ~rs, ω),
its vertical derivative ∇ ′P (~r ′, ~rs, ω), and the e�ective source signature or reference wave�eld
P0(~r ~rs, ω).

B Derivation of Equation 25

Here, the angle dependent source signature ρ(k, ω) is solved from the reference wave�eld P d0 .
We assume that (1) the distribution of the source array is invariant for each experiment, which
means that the source distribution doesn't depend on the source array locator ~rs, and (2) the
source array only distributes laterally along the horizontal variable x′. Since the translational
symmetry of the source array, the source distribution ρ only cares about the distance between
the source array locator xs and each individual air gun x′, P d0 can be rewritten as

P d0 (x, z, xs, εs, ω) =
∫
dx′ρ(x′, εs, ω)Gd0(x, z, x′ + xs, εs, ω) (45)

where x′ is the source distribution relative to the source array locator xs. Using the bilinear
form of Green's function, it becomes

P d0 (x, z, xs, εs, ω) =
∫
dx′ρ(x′, ω)

∫
dkxdkz

eikx(x−x′−xs)eikz(z−εs)

−k2
x − k2

z + ω2

c20

(46)

Fourier transforming with respect to xs gives

P d0 (x, z, ks, εs, ω) =
∫
dx′ρ(x′, ω)

∫
dkxdkz

eikx(x−x′−xs)eikz(z−εs)

−k2
x − k2

z + ω2

c20

eiksxsdxs

=
∫
dx′ρ(x′, ω)

∫
dkxdkz

eikx(x−x′)eikz(z−εs)

−k2
x − k2

z + ω2

c20

δ(ks − kx)

=
∫
dx′ρ(x′, ω)eiks(x−x

′)
∫
dkz

eikz(z−εs)

−k2
z −k2

s +
ω2

c2
0︸ ︷︷ ︸

+q2s

168



New Students M-OSRP10

=
∫
dx′ρ(x′, ω)eiks(x−x

′)
∫
dkz

eikz(z−εs)

−k2
z + q2

s

=
∫
dx′ρ(x′, ω)eiks(x−x

′) e
iqs|z−εs|

2iqs

= ρ(ks, ω)eiksx
eiqs|z−εs|

2iqs

= ρ(ks, ω)
e−iqsεs

2iqs
eiksxeiqsz (47)

Here z > εs is used.

For this special case, source array only distributes laterally, we can similarly obtain the total
reference wave�eld as

P0(x, z, ks, εs, ω) = ρ(ks, ω)
eiqs|z−εs| − eiqs|z+εs|

2iqs

= ρ(ks, ω)
e−iqsεs(1− e2iqsεs)

2iqs
eiqsz

= P d0 (x, z, ks, εs, ω)(1− e2iqsεs) (48)

C Derivation of Equation 27

The nth order free-surface demultipled data

D′n(xg, εg, xs, εs, ω) = −
∫
dx1dz1dx2dz2G

d
0(xg, εg, x1, z1, ω)V1(x1, z1, x2, z2, ω)

∗Gfs0 (x2, z2, x3, z3, ω)Vn−1(x3, z3, x4, z4, ω)P d0 (x4, z4, xs, εs, ω)dx3dz3dx4dz4 (49)

Substituting the bilinear form of the Green's function

Gd0(x, z, x′, z′, ω) =
∫
dkxdkz

eikx(x−x′)eikz(z−z′)

−k2
x − k2

z + ω2

c20

(50)

into equation 49, gives

D′n(xg, εg, xs, εs, ω) = −
∫
dx1dz1dx2dz2

∫
dk′xdk

′
z

eik
′
x(xg−x1)eik

′
z(εg−z1)

−k′2x − k′2z + ω2

c20

V1(x1, z1, x2, z2, ω)

∗
∫
dkdkz

eik(x2−x3)eikz(z2+z3)

−k2 − k2
z + ω2

c20

Vn−1(x3, z3, x4, z4, ω)P d0 (x4, z4, xs, εs, ω)dx3dz3dx4dz4 (51)

Fourier transforming with respect to xg and xs gives

D′n(kg, εg, ks, εs, ω) = −
∫
dx1dz1dx2dz2

∫
dk′xdk

′
z

eik
′
x(xg−x1)eik

′
z(εg−z1)

−k′2x − k′2z + ω2

c20

e−ikgxgdxg
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∗V1(x1, z1, x2, z2, ω)
∫
dkdkz

eik(x2−x3)eikz(z2+z3)

−k2 − k2
z + ω2

c20

Vn−1(x3, z3, x4, z4, ω)

∗P d0 (x4, z4, xs, εs, ω)eiksxsdxsdx3dz3dx4dz4

= −
∫
dx1dz1dx2dz2

∫
dk′xdk

′
z

e−ik
′
xx1eik

′
z(εg−z1)

−k′2x − k′2z + ω2

c20

2πδ(k′x − kg)V1(x1, z1, x2, z2, ω)

∗
∫
dkdkz

eik(x2−x3)eikz(z2+z3)

−k2 − k2
z + ω2

c20

Vn−1(x3, z3, x4, z4, ω)P d0 (x4, z4, ks, εs, ω)dx3dz3dx4dz4 (52)

Integrating over k′x gives

D′n(kg, εg, ks, εs, ω) = −
∫
dx1dz1dx2dz22π

∫
dk′z

e−ikgx1eik
′
z(εg−z1)

−k′2z −k2
g +

ω2

c2
0︸ ︷︷ ︸

+q2g

V1(x1, z1, x2, z2, ω)

∗
∫
dkdkz

eik(x2−x3)eikz(z2+z3)

−k2
z −k2 +

ω2

c2
0︸ ︷︷ ︸

+q2

Vn−1(x3, z3, x4, z4, ω)P d0 (x4, z4, ks, εs, ω)dx3dz3dx4dz4

= −
∫
dx1dz1dx2dz2e

−ikgx12π
∫
dk′z

eik
′
z(εg−z1)

−k′2z + q2
g

V1(x1, z1, x2, z2, ω)

∗
∫
dkdkz

eik(x2−x3)eikz(z2+z3)

−k2
z + q2

Vn−1(x3, z3, x4, z4, ω)P d0 (x4, z4, ks, εs, ω)dx3dz3dx4dz4

= −
∫
dx1dz1dx2dz2e

−ikgx1
eiqg |εg−z1|

2iqg
V1(x1, z1, x2, z2, ω)

1
2π

∫
dkeik(x2−x3) e

iq|z2+z3|

2iq

∗Vn−1(x3, z3, x4, z4, ω)P d0 (x4, z4, ks, εs, ω)dx3dz3dx4dz4 (53)

Since εg < z1 and z2, z3 > 0, equation 53 becomes

D′n(kg, εg, ks, εs, ω) = −
∫
dx1dz1dx2dz2e

−ikgx1
eiqg(εg−z1)

2iqg
V1(x1, z1, x2, z2, ω)

∗ 1
2π

∫
dkeik(x2−x3) e

iq(z2+z3)

2iq
Vn−1(x3, z3, x4, z4, ω)P d0 (x4, z4, ks, εs, ω)dx3dz3dx4dz4

= − 1
2π

∫
dk
e−iqgεg

2iqg

∫
dx1dz1dx2dz2e

−ikgx1eiqgx1V1(x1, z1, x2, z2, ω)eikx2eiqz2
1

2iq

∗e−ikx3eiqz3Vn−1(x3, z3, x4, z4, ω)P d0 (x4, z4, ks, εs, ω)dx3dz3dx4dz4

= − 1
2π

∫
dk
e−iqgεg

2iqg
V1(kg,−qg,−k,−q, ω)

1
2iq

Vn−1(k,−q, x4, z4, ω)

∗P d0 (x4, z4, ks, εs, ω)dx4dz4 (54)
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Inserting two identities into equation 54 gives

D′n(kg, εg, ks, εs, ω) = − 1
2π

∫
dk
e−iqgεg

2iqg
V1(kg,−qg,−k,−q, ω)

e−iqεs

2iq
2iq
e−iqεs︸ ︷︷ ︸

1

1
2iq

∗ 2iq
e−iqεg

e−iqεg

2iq︸ ︷︷ ︸
1

Vn−1(k,−q, x4, z4, ω)P d0 (x4, z4, ks, εs, ω)dx4dz4

= − 1
2π

∫
dk

e−iqgεg

2iqg
V1(kg,−qg,−k,−q, ω)

e−iqεs

2iq︸ ︷︷ ︸
D′1(kg,εg,k,εs,ω)

ρ(k,ω)

2iq
e−iqεs

1
2iq

2iq
e−iqεg︸ ︷︷ ︸

2iqeiq(εs+εg)

∗ e
−iqεg

2iq
Vn−1(k,−q, x4, z4, ω)P d0 (x4, z4, ks, εs, ω)dx4dz4︸ ︷︷ ︸

D′n−1(k,εg ,ks,εs,ω)

=
1
iπ

∫
dk

ρ(k, ω)
D′1(kg, εg, k, εs, ω)qeiq(εs+εg)D′n−1(k, εg, ks, εs, ω) (55)

If the constant reference density ρ0 is considered, equation 55 becomes

D′n(kg, εg, ks, εs, ω) =
1

iπρ0

∫
dk

ρ(k, ω)
D′1(kg, εg, k, εs, ω)qeiq(εs+εg)D′n−1(k, εg, ks, εs, ω) (56)

where ρ0 is the reference density, ρ(k, ω) is the angle dependent source signature. εs and εg
are the depth of sources and receivers below the free surface. kg, ks and k are the Fourier
conjugates of xg, xs and x, respectively. q is the obliquity factor

√
(ω/c0)2 − k2.
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Short documentation on comparison of �nite di�erence modeling

and re�ectivity modeling

X. Li, F. Liu and P. Terenghi

This is a short documentation for the group.

1 Background and motivation

Depth imaging using inverse scattering series for multi-parameter is a very important and
challenging issue. Not only the imaging algorithm needs to include more terms to increase
its capability and accommodate larger contrast, the AVO front end for imaging also needs
attention. In previous reports, Li et al. (2009); Li and Weglein (2010) and Jiang et al. (2009)
studied 1D multi-parameter depth imaging and showed results on acoustic and elastic case
for analytic data. In this year's reports, Chang et al. (2011) discuss about the 1D two-
parameter �nite di�erence data test showing encouraging results. Because the calculation
of AVO front end, α1 − β1, is sensitive to the amplitude information of the events, it is
important to estimate the quality of the modeled data for initial study. In this short note,
data generated by the �nite di�erence method and the re�ectivity method (from D. Corrigan
code) are qualitatively compared. The results show that data generated by the �nite di�erence
code does not correctly preserve polarity reversal information in re�ection coe�cient, while
the re�ectivity code generates more accurate data. This study is important to understand
and to isolate issues produced from di�erent steps in the perspective of the imaging goal.

2 Results

Re�ectivity modeling (from D. Corrigan code) and �nite di�erence modeling are compared
on the same model. A simple three-layered model with two interfaces and no free surface
is considered. The parameters are as follows: ρ0 = 1.0 g/cm3, c0 = 1500 m/s, ρ1 = 1.1
g/cm3, c1 = 1600 m/s, ρ2 = 1.5 g/cm3, and c2 = 1200 m/s. The parameters are designed
so that polarity reversal of the re�ection coe�cient from the second re�ector is observable.
A wavelet whose amplitude spectrum is a trapezoid with characteristic frequencies 0, 10,
60, 100 Hz is used in both cases. Modeling results using two-dimensional propagation ares
chosen for comparison. For the re�ectivity modeling code, the choice corresponding to use the
appropriate entry in the parameter card. For the �nite di�erence modeling code, a 2D Green's
function must be used to generate the starting wave�elds which are further propagated using
a 2D discretization scheme.
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2.1 Re�ectivity modeling

Figure 1 shows data generated from re�ectivity code in (x,t) domain. The polarity reversal
information of the second primary is what should be observed in the data. In Figure 2 we can
see that at some point the polarity changes sign (at about x ≈ 500 m). Figure 3 and 4 show
the corresponding re�ectivity data in (τ, θ) domain. Again the polarity reversal information
shows up clearly.

2.2 Finite di�erence modeling

Figure 3 shows data generated from �nite di�erence code in (x,t) domain for the same model.
As mentioned previously, polarity reversal in the second primary is expected. However, from
the enlarged Figure 4, it is not as clear as in the re�ectivity data. The wave form has smoothly
changed around the point of polarity reversal without ever reaching a zero. Figure 7 and
Figure 8 show the corresponding �nite di�erence data in (τ, θ) domain.
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Figure 1: Re�ectivity data in (x,t) domain.
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Figure 2: Enlarged second event from Figure 1.

3 Conclusions

This short note mainly focused on comparing the data generated by �nite di�erence model-
ing and re�ectivity modeling. In terms of modeling the polarity reversal information, �nite
di�erence modeling is not as accurate as re�ectivity modeling.
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Figure 3: Re�ectivity data in (τ, θ) domain.
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Figure 4: Enlarged second event from Figure 3.
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Figure 5: Finite di�erence data in (x,t) domain
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Figure 6: Enlarged second event from Figure 3
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Figure 7: Finite di�erence data in (τ, θ) domain.
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Figure 8: Enlarged second event from Figure 7.
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Short documentation on true-amplitude re�ectivity modeling

X. Li

This short note explains how the D. Corrigan re�ectivity modeling code should be used for
the purpose of testing and analyzing the inverse scattering series (ISS) imaging algorithm.
Starting from perfect analytic data make it possible to understand and isolate issues pro-
duced by di�erent processing steps. Since the re�ectivity method can provide true amplitude
synthetic data, it is important to use it correctly to serve the ISS imaging tests. This short
note documents items that are crucial for getting accurate synthetic data in the (τ, p) domain.
An example illustrates how missing low frequencies make the true-amplitude information less
accessible to immediate interpretation.

1 How to compile the code

Under the directory of /home/xli12/pdcorrigan, there are �ve folders: bin (which has the
executable programs), models (which has the parameter input card where you can set up
your own model, and there is detailed documentation on each of the choices), obj, lib (the
utility libraries) and src (the source codes). There are several make�les for compiling the code
(look up the command make for more detailed description). First, compile those that generate
utility libraries (under src folder, there are four folders: mathadv, segylib, slib and ulib, and
each of them has a make�le). After the utility libraries are ready, go to the main code folder
(src/acoustic or src/acoustic-taup) to compile it. Keep in mind that this code is supposed to
be compiled using g77, or else there will be some errors. (For example, when compiling on
isis machine, we need to �rst type the following command: export F77=gfortran.)

2 Remarks on using the parameter card

There are some key items when using acoustic-taup code to generate data. (Refer to Figure 6
for an example of the parameter card. Detailed description of every item is in the original
documentation).

• On card #4, which de�nes the frequency range, when putting a low cut frequency=0, the code
will give us NAN values. If a full bandwidth box-like dataset is desired, experience shows that
the low cut value has to be smaller than 0.01Hz.

• On card #7, which de�nes parameters for each layer, the velocity of the last layer in the model
should always be 1500m/s1.

1This has no physical meaning, just a remark for the code to run correctly.
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• According to the documentation titled Calibrated acoustic modeling, the output data O(τ, p)
generated from this program is O(τ, p) = [R.C.]

2∗
√

1−c20p2
, where [R.C.] represents the re�ection

coe�cient. In order to have the re�ection coe�cient for ISS imaging tests, a rescaling process
is needed.

Taking the above items into consideration, let's look at an example. The model features: a
four-layered earth with a constant density pro�le ρ = 1.0g/cm3, and a variable velocity pro�le
c0 = 1500m/s, c1 = 1800m/s, c2 = 2000m/s and c3 = 1500m/s. First, choose a frequency
range (in the 4th row of the parameter card) as (F1, F2, F3, F4) = (0.0001, 0.0001, 60, 85)Hz.

• A closer look at the output data O(τ, p), e.g., in Figure 1, shows that the trace for p = 0
is plotted, above the �rst re�ector (in this case, z = 400m), and the amplitude of the data
should be zero. This �gure reveals that there is a non-zero value in the data above the �rst
re�ector. A simple calculation proves that the amplitude has shifted away from its true value
by that amount. So when outputting re�ection coe�cients, it is necessary to compensate for
this error by subtracting the bias given by the computed amplitude above the �rst re�ector.

Keeping this correction in mind, the next step is to compare data generated for di�erent
frequency range to get an approximate idea of how the data will be a�ected.

• The frequency range is (F1, F2, F3, F4) = (0.0001, 0.0001, 60, 85)Hz for data in Figure 2 and
(F1, F2, F3, F4) = (0.1, 0.1, 60, 85)Hz for data in Figure 3. The low cut and low pass frequen-
cies are the only di�erence. Figure 4 and 5 shows the corresponding traces in each case for
p = 0. Here is where the amplitude issues mentioned above are corrected. From these two
detailed traces, notice that amplitude of the generated data is greatly a�ected by missing the
low frequency information.
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Figure 1: Data generated for the four-layered model using re�ectivity data. Full bandwidth box-like data

are obtained. The trace for p = 0 is plotted in this Figure. Note that there is a bias in the

amplitude.
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Figure 4: A trace for p = 0 is plotted from Figure 2.
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Figure 5: A trace for p = 0 is plotted from Figure 3.

Compared with Figure 4, notice the signif-

icant change in the amplitude.

xuli01
ACOU          N     /home/xli12/pdcorrigan/models/acoustic_taup/xuli01.trc

Acoustic model for Xu

         0         1        10        10         0         3

   0.00001   0.00001        60        85

         1      5000         0        20        51

         4      1480       250         5

      1500                   1      1200                 410

      1800                   1      1200                 610

      2000                   1      1200                 500

      1500                   1      1200                  

----+----1----+----2----+----3----+----4----+----5----+----6

Page 1

Figure 6: Example of the parameter card. Refer to the original documentation for detailed parameter

description.
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Running head: Wave-field representations using Green’s theorem

ABSTRACT

In this paper, part II of a two paper set, we place Green’s theorem based reverse time migration
(RTM), for the first time on a firm footing and technically consistent math-physics foundation.
The required new Green’s function for RTM application is developed and provided, and is neither
causal, anticausal, nor a linear combination of these prototype Green’s functions, nor these functions
with imposed boundary conditions. We describe resulting fundamentally new RTM theory and
algorithms, and provide a step-by-step prescription for application in 1D, 2D and 3D, the latter for
an arbitrary laterally and vertically varying velocity field. The original RTM method of running
the wave equation backwards with surface reflection data as a boundary condition is not a wave
theory method for wave-field prediction, neither in depth nor in reversed time. In fact, the latter
idea corresponds to Huygens Principle which evolved and was corrected and became a wave theory
predictor by George Green in 1826. The original RTM method, where (1) ’running the wave equation
backward in time’, and then (2) employing a zero lag cross-correlation imaging condition, is in both
of these ingredients less accurate and effective than the Green’s theorem RTM method of this two
paper set. Furthermore, all currently available Green’s theorem methods for RTM make fundamental
conceptual and algorithmic errors in their Green’s theorem formulations. Consequently, even with
an accurate velocity model, current Green’s theorem RTM formulations can lead to image location
errors and other reported artifacts. Addressing the latter problems is a principal goal of the new
Green’s theorem RTM method of this paper. Several simple analytic 1D examples illustrate the new
RTM method. We also compare the general RTM methodology and philosophy, as the high water
mark of current imaging concepts and application, with the next generation and emerging Inverse
Scattering Series imaging concepts and methods.
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INTRODUCTION

An important and central concept resides behind all current seismic processing imaging methods
that seek to extract useful subsurface information from recorded seismic data. That concept has
two ingredients: (1) from the actual recorded surface seismic experiment and data, to predict what
an experiment with a source and receiver at depth would record, and (2) exploiting the fact that a
coincident source receiver experiment at depth, would, for small recording times, be an indicator of
only local earth mechanical property changes at the coincident source-receiver position. These two
ingredients, a wave-field prediction, and an imaging condition, reside behind all current leading edge
seismic migration algorithms. The purpose of this two paper set is to advance our understanding,
and provide concepts and new algorithms for the first of these two ingredients: subsurface wave-field
prediction from surface wave-field measurements, when the wave propagation between source and
target and/or target and receiver is not a one-way propagating wave in terms of depth..

As with all current migration methods, an accurate velocity model is required for this procedure
to deliver an accurate structure map, that is, the spatial configuration of boundaries in the subsurface
that correspond to reflectors where rapid changes in physical properties occur.

In this paper, we for the first time place Reverse Time Migration (RTM) on a firm theoretical
footing derived from Green’s theorem. Green’s theorem provides a useful framework for deriving
algorithms to predict the wave-field at depth from surface measurements. There is much current
interest and activity with RTM in exploration seismology.

The original RTM was pioneered, developed and applied by Dan Whitmore and his AMOCO
colleagues in the 1980’s (Whitmore (1983)), for exploration in the overthrust belt. The traditional
seismic thinking that used a wave traveling from source down to the reflector and then up from the
reflector to the receiver was extended to allow, e.g., waves to move down and up from source to
a reflector and down and then up from reflector to the receiver. For one-way wave propagation, a
single step in depth corresponds to one step in time, with a fixed sign in the relationship between
change in depth and change in time. Hence, for one-way waves, we can equivalently go down
the up wave in space or take a step backwards in time. For two-way wave propagation, reversing
time or extrapolating down an upcoming wave are not equivalent. And to image a reflector that
reflected a turning wave requires a non-one-way wave model that reversed time can satisfy. In
wave theoretic downward continuation migration, the source wave-field and receiver wave-fields are
each extrapolated to the subsurface using one-way wave equations to obtain an experiment with
coincident sources and receivers at depth.

The idea behind the two-way wave extrapolators (Whitmore (1983), McMechan (1983), Baysal
et al. (1983)) is to handle waves propagating in any direction, including overturning waves and
prismatic waves. The most common implementation uses finite-difference techniques to solve the
wave equation, which in the acoustic case is given by(

∇2 − 1
c2
∂2
t

)
P (r, t) = 0 , (1)

where P can be either the source or receiver wave-field. To calculate the source wave-field, standard
forward modeling injecting a user defined source signature into the model at the actual source
position is done. For the receiver wave-field, the wave equation is run backwards in time and the
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recorded wave-field is injected into the model at the receiver positions as a boundary condition. The
injection of the recorded wave-field is done starting with later times and finishing with the early
times. That idea of using the measured values of the wave-field as the boundary conditions for
a wave equation run backwards in time corresponds to Huygens’ principle (Huygens, 1690). The
image, I(x) is generated using a zero lag cross-correlation imaging condition,

I(x) =
∫ tmax

0

dt S(x, t)R(x, tmax − t), (2)

where the maximum recording time is tmax, S(x, t) is the modeled source wave-field andR(x, tmax−t)
is the receiver wave-field (Fletcher et al., 2006). There are other imaging conditions cited in the
literature, among them the deconvolution imaging condition (Zhang et al., 2007) but at this point
in time it seems that the cross-correlation imaging condition is often employed. The latter imaging
principle is not equivalent to the downward continuation of sources and receivers at depth and
seeking a zero time result from a coincident source-receiver experiment.

One of the disadvantages of RTM is that it requires the availability of a large amount of memory
which increases with respect to the frequencies we want to migrate (Liu et al., 2009). As a conse-
quence, memory availability has been a limitation to the application of this technology, especially
to high resolution data from large 3D acquisitions. Nevertheless, recent improvements in computer
hardware have enabled different implementations of RTM throughout the energy industry and there
is a renewed interest in this technology due to its ability to accommodate and image in media where
waves turn, as e.g. can occur in subsalt plays. Several efforts have been aimed at improving the
efficiency of the algorithm and dealing with the high storage cost for 3D implementation. For ex-
ample, Toselli and Widlund (2000) used domain deconvolution which splits the computations across
multiple nodes to improve the efficiency of the algorithm, and Symes (2007) introduced optimal
checkpointing techniques to deal with the storage requirements, although, this type of technique can
increase the computation cost. These are examples of improvements directly related to the numeri-
cal implementation of the RTM algorithm. Other efforts to deal with the practical requirements of
RTM are based on changes in the theoretical approach to the problem. One example is the work
of Luo and Schuster (2004) where a target oriented reverse time datuming (RTD) technique based
on Green’s theorem is proposed. RTD can also be seen as a bottom-up shooting approach for RTM.
Using RTD’s formulation, only the velocity model above the datum is used to calculate the Green’s
function. No velocity under the datum is required, making the modeling more efficient. This formu-
lation also allows for target oriented RTM and/or inversion. In target oriented RTM, the idea is to
redatum the data into a mathematical surface (referred to as the datum surface) within the earth’s
subsurface and use RTM below the datum surface to obtain a local RTM image of a given target
area below the datum (Dong et al., 2009). In target oriented inversion, the inversion is carried out
only for a target area below the datum. Target oriented inversion has also been proposed using the
CFP domain.

The current formulation of RTD or bottom-up shooting for RTM, uses a high frequency approxi-
mation to Green’s theorem (interferometry equation) and measurements at the measurement surface.
This formulation presents several approximations which can impact the quality of the redatuming
or the migration (if an imaging condition is applied after RTD).

1. The first approximation is related to the measurement surface. Green’s theorem based al-
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gorithms, in principle, require measurements over a closed surface. The fact that we only
measure the wave-field in a limited surface has an effect on the quality of the redatuming and
can create artifacts in both the redatumed data and the migration. Directly addressing that
issue is one of the principle aims of this paper. These measurements can be interchanged for
sources at the surface using reciprocity principles.

2. The second approximation is the high frequency, one-way wave approximation commonly used
in interferometry. This approximation allows us to remove the need for the normal derivative
of the pressure field at the measurement surface. The normal derivative is required by Green’s
theorem in its most common form, which is the one used by (Luo and Schuster, 2004) in
their RTD formulation. As an analogy to interferometry, when used with two-way waves, this
high frequency, one-way wave approximation will create spurious multiples in the redatumed
wave-field within the earth’s subsurface (see e.g. Ramı́rez and Weglein (2009)).

Dong et al. (2009) deal with the effect of these approximations by smoothing the model, and, hence,
reducing the effect of the one-way wave approximation. However, smoothing the model does not
solve completely the problems created by the use of approximations. The redatumed wave-field will
contain artifacts. Some of these artifacts will be imaged and stacking will not remove these artifacts
completely.

Some indication of the level of current interest in RTM can be gleaned by: (1) the number of
papers devoted to that subject in recent SEG and EAGE meetings, and subsalt workshops and
(2) the November 2010 Special Section of The Leading Edge on Reversed Time Migration with an
Introduction by Etgen and Michelena (2010) and papers by Zhang et al. (2010), Jin and Xu (2010),
Crawley et al. (2010), and Higginbotham et al. (2010).

PROPAGATION FOR RTM IN A ONE DIMENSIONAL EARTH:

USING GREEN’S FUNCTIONS TO AVOID THE NEED FOR DATA

AT DEPTH, NEW NONCAUSAL OR CAUSAL GREEN’S

FUNCTIONS

Green’s theorem in 3D in the (r, ω) domain to determine a wave-field, P (r, ω) for r in V is given by

P (r, ω) =
∫
V

dr′ ρ(r′, ω)G0(r, r′, ω)

+
∮
S

dS′ n · (P (r′, ω)∇′G0(r, r′, ω)−G0(r, r′, ω)∇′P (r′, ω)) . (3)

In 1D in the slab a ≤ z ≤ b, (3) becomes

P (z, ω) =
∫ b

a

dz′ ρ(z′, ω)G0(z, z′, ω)

+
∣∣∣b
a

(
P (z′, ω)

dG0

dz′
(z, z′, ω)−G0(z, z′, ω)

dP

dz′
(z′, ω)

)
. (4)

Assuming no sources in the slab, the 1D homogeneous wave equation is(
d2

dz′ 2
+ k2

)
P (z′, ω) = 0 , for z < z′ < b (5)
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with general solution

P (z′, ω) = Aeikz
′
+Be−ikz

′
for z < z′ < b (6)

where k = ω/c. Given the conventions positive z′ increasing downward and time dependence e−iωt

in Fourier transforming from ω to t, the first term in (6) is a downgoing wave and the second term
is an upgoing wave.

The equation for the corresponding Green’s function is(
d2

dz′ 2
+ k2

)
G0(z, z′, ω) = δ(z − z′) , (7)

with causal and anticausal solutions

G+
0 (z, z′, ω) =

1
2ik

eik|z−z
′| , (8)

G−0 (z, z′, ω) = − 1
2ik

e−ik|z−z
′| . (9)

Eq. (4) suggests that the Green’s function we need is such that it and its derivative vanish at z′ = b.
Such a Green’s function removes the need for measurements at z′ = b. Eq. (7) is an inhomogeneous
differential equation with general solution A1e

ikz′ +B1e
−ikz′ +G0(z, z′, ω) where the first two terms

are the general solution to the homogeneous differential equation and the third term is any particular
solution to the inhomogeneous differential equation. The choice G0(z, z′, ω) = G+

0 (z, z′, ω) gives the
following general solution of (7):

G0(z, z′, ω) = A1e
ikz′ +B1e

−ikz′ +
1

2ik
eik|z−z

′| . (10)

Its derivative is

dG0

dz′
(z, z′, ω) = A1e

ikz′ik +B1e
−ikz′(−ik)

+
1

2ik
eik|z−z

′|ik sgn(z − z′)(−1) . (11)

Now we impose boundary conditions in order to find A1 and B1. The requirement that (10) and
(11) vanish at z′ = b gives

0 = A1e
ikb +B1e

−ikb +
1

2ik
e

ik |z − b|︸ ︷︷ ︸
b−z

0 = A1e
ikbik +B1e

−ikb(−ik) +
1

2ik
e

ik |z − b|︸ ︷︷ ︸
b−z ik sgn(z − b)︸ ︷︷ ︸

−1

(−1)

A1e
ikb +B1e

−ikb = − 1
2ik

eik(b−z)

A1e
ikb −B1e

−ikb = − 1
2ik

eik(b−z)

2A1e
ikb = −2

1
2ik

eik(b−z)

A1 = − 1
2ik

e−ikz , (12)

2B1e
−ikb = 0

B1 = 0 . (13)
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Substituting (12) and (13) into (10) gives

G0(z, z′, ω) = − 1
2ik

e−ikzeikz
′
+

1
2ik

eik|z−z
′|

= − 1
2ik

(e−ik(z−z′) − eik|z−z′|) . (14)

Note the following about (14):

1. When z′ = b, G0(z, b, ω) vanishes:

G0(z, b, ω) = − 1
2ik

(e−ik(z−b) − e
ik |z − b|︸ ︷︷ ︸

b−z ) = − 1
2ik

(e−ik(z−b) − e−ik(z−b)︸ ︷︷ ︸
0

) . (15)

2. When a < z′ < b, G0(z, z′, ω) is neither causal nor anticausal due to the presence of the term
−1/(2ik) e−ik(z−z′).

3. When z′ = a, G0(z, a, ω) is the sum of anticausal and causal terms, but not in general or at
any other depth.

G0(z, a, ω) = − 1
2ik

(e

−ik (z − a)︸ ︷︷ ︸
|z−a| − eik|z−a|) = − 1

2ik
e−ik|z−a|︸ ︷︷ ︸

anticausal

+
1

2ik
eik(z−a)︸ ︷︷ ︸
causal

. (16)

4. Normally one uses Dirichlet or Neumann or Robin boundary conditions on the surface S (in
our 1D case at both a and b). Constructing the Green’s function (14) has enabled us to use
both Dirichlet and Neumann boundary conditions on part of the surface S (in our 1D case
only at a).

The Green’s function for two-way propagation that will eliminate the need for data at the lower
surface of the closed Green’s theorem surface is found by finding a general solution to the Green’s
function for the medium in the finite volume model and imposing both Dirichlet and Neumann
boundary conditions at the lower surface. We confirm that the Green’s function (14), when used in
Green’s theorem, will produce a two-way wave for a < z < b with only measurements on the upper
surface. Substituting (6), (14), and their derivatives into (4) gives P (z, ω) = Aeikz + Be−ikz, i.e.,
we recover the original two-way wave-field. The details are in Appendix A.

A and B can be derived from the measured data P (a) and P ′(a):

P (a) = Aeika +Be−ika

P ′(a) = Aeikaik +Be−ika(−ik)
P ′(a)
ik

= Aeika −Be−ika

2Aeika = P (a) +
P ′(a)
ik

A = e−ika
ikP (a) + P ′(a)

2ik
, (17)

2Be−ika = P (a)− P ′(a)
ik

B = eika
ikP (a)− P ′(a)

2ik
. (18)
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In a homogeneous medium the 3D equivalent of (5) is

(∇′ 2 + k2)P (x′, y′, z′, ω) = 0 , (19)

where k = ω/c. Fourier transforming over x′ and y′ gives d2

dz′ 2
−k2

x′ − k2
y′ +

ω2

c2︸ ︷︷ ︸
≡k2

z′

P (kx′ , ky′ , z′, ω) = 0 , (20)

which looks like the 1D problem(
d2

dz′ 2
+ k2

z′

)
P (kx′ , ky′ , z′, ω) = 0 , (21)

with general solution

P (kx′ , ky′ , z′, ω) = Aeikz′z
′
+Be−ikz′z

′
. (22)

We illustrate, in the next section, a more complicated 1D example, where the finite volume
contains a reflector.

RTM AND GREEN’S THEOREM: TWO-WAY WAVE PROPAGATION

IN A 1D FINITE VOLUME THAT CONTAINS A REFLECTOR

Consider a single reflector example with the following properties: z increases downward, the source
is located at depth zs (where 0 < zs < a), the receiver is located at depth zg (where zs < zg < a),
for 0 ≤ z ≤ a the medium is characterized by c0, for z > a the medium is characterized by c1, and
the reflection coefficient R and transmission coefficient T at the interface (z = a) are given by

R =
c1 − c0
c0 + c1

, (23)

T =
2c1

c0 + c1
. (24)

Assume the source goes off at t = 0. Then the wave-field P for z < a, i.e., above a, is given by

P =
eik|z−zs|

2ik
+R

e−ik(z−a)

2ik
eik(a−zs) . (25)

In the time domain, the front of the plane wave travels with δ(t− |z − zs|/c0) out from the source.
Hence, the first term in (25) for P is the incident wave-field (an impulse) and for the second term
in P

δ

t− |a− zs|
c0︸ ︷︷ ︸

from source to reflector

− |z − a|
c0︸ ︷︷ ︸

from reflector to field point z

 . (26)

Fourier transforming gives:∫ ∞
−∞

eiωtδ

(
t− |a− zs|

c0
− |z − a|

c0

)
dt = e

(
iω

( |a−zs|
c0

+
|z−a|

c0

))

for z < a = eik(a−zs)−ik(z−a) = e−ik(z−(2a−zs)) . (27)
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Therefore 2a − zs − z is the travel path from the source to the reflector and up to the field point
z. If instead of an incident Green’s function we choose a plane wave, we drop the 1/(2ik) and set
zs = 0, and then the incident plane wave passes the origin z = 0 at t = 0.

The transmitted wave field is for z > a

P =
1

2ik
Teik|a−zs|eik1(z−a) , (28)

with R and T given by (23); then (25) and (28) provide the solution for the total wave field every-
where.

Now we introduce Green’s theorem. The total wave-field P satisfies{
d2

dz′ 2
+

ω2

c2(z′)

}
P = δ(z′ − zs) , (29)

and the Green’s function G will satisfy{
d2

dz′ 2
+

ω2

c2(z′)

}
G = δ(z − z′) , (30)

where

c(z′) =

{
c0 z′ < a

c1 z′ > a
. (31)

The solution for P is given in (25) and (28). The solution for G will be determined below. GH and
GP are a homogeneous solution and particular solution, respectively, of the following differential
equations: {

d2

dz2
+

ω2

c2(z)

}
GH = 0 , (32){

d2

dz2
+

ω2

c2(z)

}
GP = δ . (33)

A particular solution, GP , can be given by (25) and (28) and with z′ replacing zs, we find

P (z, zs, ω) =
∣∣∣B
A
{P (z′, zs, ω)

dG

dz′
(z, z′, ω)−G(z, z′, ω)

dP

dz′
(z′, zs, ω)} , (34)

where A = zg, the depth of the MS, and B > a is the lower surface of Green’s theorem.

The ’source’ at depth z is within [A,B] and either above or below the reflector at z = a; conditions
will be placed on the solution, G, (for a source within the volume) for the field point of G at depth
z′ to satisfy at B. That is

(G(z, z′, ω))z′=B = 0 , (35)

and
(
dG

dz′
(z, z′, ω)

)
z′=B

= 0 . (36)

First pick the ’source’ in the Green’s function to be above the reflector, then (25) and (28) provide
a specific solution when we substitute for zs in P , the parameter, z, and for z in P the parameter,
z′. The latter allows a particular solution for G for the case that z in G is within [A,B] but above
z = a. Please note: The physical source is outside the volume, but the ’source’ in the Green’s

8



function is inside the volume. Also, note that for the case of the (output point, z) ’source’ in the
Green’s function to be below the reflector and within [A,B] that a different solution for P other
than what is given in (25) and (28), would be needed for a particular solution of G. The latter would
require a solution for P where the source is in the lower half space.

What about the general solution for GH?{
d2

dz′ 2
+

ω2

c2(z′)

}
GH = 0 . (37)

The general solution to (37) is, for any incident plane wave, A(k) for [A,B]

GH =

{
A1e

ikz′ +B1e
−ikz′ z′ < a

C1e
ik1z

′
+D1e

−ik1z′ z′ > a
. (38)

The general solution to (37) has to allow the possibility of an incident wave from either direction,
that’s what general solution means! The general solution for G for the single reflector problem and
the source, z, above the reflector is given by

G(z, z′, ω) =

{
eik|z′−z|

2ik +R e−ik(z′−a)

2ik eik(a−z) +A1e
ikz′ +B1e

−ikz′ z′ < a
T

2ike
ik|a−z|eik1(z′−a) + C1e

ik1z
′
+D1e

−ik1z′ z′ > a
(39)

for the source z being above the reflector and we choose C1 and D1 such that

G(z,B, ω) = 0 , and (40)[
dG

dz′
(z, z′, ω)

]
z′=B

= 0 , (41)

where, for z′ > a, GP is T/(2ik)eik|a−z|eik1(z′−a). Eq. (39) will be the Green’s function needed in
Green’s theorem to propagate/predict above the reflector at z′ = a where P is given by (25) and
(28). To determine A1 and B1, make the solutions for z′ < a and z′ > a and their derivatives
match at z′ = a (conditions of continuity across the reflector). The details are in Appendix B. In
practice, the deghosted scattered wave is upgoing (one-way) and finding its vertical derivative is
simply ikz × P . Deghosting precedes migration.

For downward continuing past the reflector, as previously stated, the P solution needed for
the particular solution of the Green’s function starts with a source in the lower half space where
k1 = ω/c1. That’s how it works. In practice for a v(x, y, z) medium a modeling will be required that
imposes a double vanishing boundary condition at depth to produce the Green’s function for RTM.

MULTIDIMENSIONAL RTM

Consider a volume V inside a homogeneous medium; V is bounded on the left by x′ = A, on the
right by x′ = L1, on the top by z′ = B, and on the bottom by z′ = L2 (Fig. 1). We want to use
Green’s theorem to estimate the wave-field P in V which requires we measure P and ∂P/∂n on the
boundary S of V . However, we can place receivers only at z′ = B. Can we construct a Green’s
function G such that it and its normal derivative ∂G/∂n vanish on three sides of V so that P can
be estimated in V using only the measurements on z′ = B?
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G can be written as the sum of a homogeneous solution GH and a particular solution GP where
G satisfies the partial differential equation (∇′ 2 + k2)G = δ(r − r

′
) and GH satisfies the partial

differential equation (∇′ 2 + k2)GH = 0. We try solutions of the form:

G(r
′
, r, ω) =

∑
m,n

Am,n(r)Xm(x′)Zn(z′) +GP (r
′
, r, ω) , (42)

GH(r
′
, r, ω) =

∑
m,n

Am,n(r)Xm(x′)Zn(z′) , (43)

with the boundary conditions that G and ∂G/∂n vanish at x′ = A, z′ = L2, and x′ = L1, i.e.,

at x′ = A G = 0 and − ∂G

∂x′
= 0, (44)

at z′ = L2 G = 0 and
∂G

∂z′
= 0, and (45)

at x′ = L1 G = 0 and
∂G

∂x′
= 0. (46)

Substituting (43) into (∇′ 2 + k2)GH = 0 gives:

0 =
(

∂2

∂x′ 2
+

∂2

∂z′ 2
+ k2

)
Xm(x′)Zn(z′)

= X ′′m(x′)Zn(z′) +Xm(x′)Z ′′n(z′) + k2Xm(x′)Zn(z′)

=
X ′′m(x′)
Xm(x′)

+
Z ′′n(z′)
Zn(z′)

+ k2

=⇒ Z ′′n(z′)
Zn(z′)

= −λ2

0 = Z ′′n(z′) + λ2Zn(z′)

Zn(z′) = C1e
iλnz

′
+ C2e

−iλnz
′

(47)

0 = X ′′m(x′) + (k2 − λ2︸ ︷︷ ︸
≡µ2

)Xm(x′)

Xm(x′) = C3e
iµmx

′
+ C4e

−iµmx
′

, (48)

where µ2
m −→ Xm(x′) and λ2

n −→ Zn(z′). We assume Xm(x′) and Zn(z′) are orthonormal and
complete.

The boundary conditions on the left are G(A, z′) = 0 and Gx′(A, z′) = 0, on the right G(L1, z
′) =

0 and Gx′(L1, z
′) = 0, and on the bottom G(x′, L2) = 0 and Gz′(x′, L2) = 0. Substituting these
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boundary conditions into (42) gives:

0 = G(A, z′, x, z) =
∑
m,n

Am,n(r)Xm(A)Zn(z′) +GP (A, z′, x, z) , (49)

0 = Gx′(A, z′, x, z) =
∑
m,n

Am,n(r)X ′m(A)Zn(z′) +
d

dx′
GP (A, z′, x, z) , (50)

0 = G(L1, z
′, x, z) =

∑
m,n

Am,n(r)Xm(L1)Zn(z′) +GP (L1, z
′, x, z) , (51)

0 = Gx′(L1, z
′, x, z) =

∑
m,n

Am,n(r)X ′m(L1)Zn(z′) +
d

dx′
GP (L1, z

′, x, z) , (52)

0 = G(x′, L2, x, z) =
∑
m,n

Am,n(r)Xm(x′)Zn(L2) +GP (x′, L2, x, z) , (53)

0 = Gz′(x′, L2, x, z) =
∑
m,n

Am,n(r)Xm(x′)Z ′n(L2) +
d

dz′
GP (x′, L2, x, z) . (54)

Eq. (49) is:

−GP (A, z′, x, z) =
∑
m,n

Am,n(r)Xm(A)Zn(z′) . (55)

Multiplying by Zs(z′), integrating, and substituting (47) and (48) give:

−
∫ B

L2

GP (A, z′, x, z)Zs(z′) dz′ =
∑
m

Am,s(r)Xm(A)

−
∫ B

L2

GP (A, z′, x, z)(C1e
iλsz

′
+ C2e

−iλsz
′
) dz′

=
∑
m

Am,s(r)(C3e
iµmA + C4e

−iµmA) . (56)
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In similar fashion we get:

−
∫ B

L2

d

dx′
GP (A, z′, x, z)(C1e

iλsz
′
+ C2e

−iλsz
′
) dz′

=
∑
m

Am,s(r)iµm(C3e
iµmA − C4e

−iµmA) , (57)

−
∫ B

L2

GP (L1, z
′, x, z)(C1e

iλsz
′
+ C2e

−iλsz
′
) dz′

=
∑
m

Am,s(r)(C3e
iµmL1 + C4e

−iµmL1) , (58)

−
∫ B

L2

d

dx′
GP (L1, z

′, x, z)(C1e
iλsz

′
+ C2e

−iλsz
′
) dz′

=
∑
m

Am,s(r)iµm(C3e
iµmL1 − C4e

−iµmL1) , (59)

−
∫ L1

A

GP (x′, L2, x, z)(C3e
iµsx

′
+ C4e

−iµsx
′
) dz′

=
∑
m

Am,s(r)(C1e
iλnL2 + C2e

−iλnL2) , (60)

−
∫ L1

A

d

dz′
GP (x, L2, x, z)(C3e

iµsx
′
+ C4e

−iµsx
′
) dz′

=
∑
m

Am,s(r)iλn(C1e
iλnL2 − C2e

−iλnL2) . (61)

The Am,s coefficients are determined by the imposed Dirichlet and Neumann boundary conditions
on the base and walls of the finite volume.

GENERAL STEP-BY-STEP PRESCRIPTION FOR RTM IN A FINITE

VOLUME WHERE THE VELOCITY CONFIGURATION IS C(X, Y, Z)

Step (1) For a desired downward continued/migration output point (x, y, z) for determining P (x, y, z, ω){
∇2 +

ω2

c2(x′, y′, z′)

}
G0(x′, y′, z′, x, y, z, ω) = δ(x− x′)δ(y − y′)δ(z − z′) , (62)

for a source at (x, y, z) and P is the physical/causal solution satisfying{
∇′ 2 +

ω2

c2(x′, y′, z′)

}
P (x′, y′, z′, xs, ys, zs, ω) = A(ω)δ(x′ − xs)δ(y′ − ys)δ(z′ − zs). (63)

G0 is the auxiliary or Green’s function satisfying{
∇′ 2 +

ω2

c2(x′, y′, z′)

}
G0(x, y, z, x′, y′, z′, ω) = δ(x− x′)δ(y − y′)δ(z − z′) , (64)

for (x, y, z) in V and G0 and ∇′G0 · n̂′ are both zero for (x′, y′, z′) on the lower surface SL and the
walls SW of the finite volume. The solution for G0 in V and on S can be found by a numerical
modeling algorithm where the ’source’ is at (x, y, z) and the field, G0, at (x′, y′, z′) and ∇G0 · n̂
are both imposed to be zero on SL and SW . Once that model is run for a source at (x, y, z) for
G0(x′, y′, z′, x, y, z, ω) [for every eventual wave prediction point, (x, y, z), for P ] where G0 satisfies
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Dirichlet and Neumann conditions for (x′, y′, z′) on SL and SW we output G0(x′, y′, z′, x, y, z, ω) for
(x′, y′, z′) on SU (the measurement surface).

Step (2) Downward continue the receiver

P (x, y, z, xs, ys, zs, ω) =
∫ {

∂GDN0

∂z′
(x, y, z, x′, y′, z′, ω)P (x′, y′, z′, xs, ys, zs, ω)

− ∂P

∂z′
(x′, y′, z′, xs, ys, zs, ω)GDN0 (x, y, z, x′, y′, z′, ω)

}
dx′dy′ , (65)

where z′ = fixed depth of the cable and (xs, ys, zs) = fixed location of the source. This brings the
receiver down to (x, y, z), a point below the measurement surface in the volume V .

Step (3) Now downward continue the source

P (xg, yg, z, x, y, z, ω) =
∫ {

∂GDN0

∂zs
(x, y, z, xs, ys, zs, ω)P (xg, yg, z, xs, ys, zs, ω)

− ∂P

∂zs
(xg, yg, z, xs, ys, zs, ω)GDN0 (x, y, z, xs, ys, zs, ω)

}
dxsdys. (66)

P (xg, yg, z, x, y, z, ω) is a downward continued receiver to (xg, yg, z) and the source to (x, y, z) and
change to midpoint offset P (xm, xh, ym, yh, zm, zh = 0, ω) and∫

dω

{
∂GDN0

∂zs
(x, y, z, xs, ys, zs, ω)P (xg, yg, z, xs, ys, zs, ω)

− ∂P

∂zs
(xg, yg, z, xs, ys, zs, ω)GDN0 (x, y, z, xs, ys, zs, ω)

}
, (67)

and Fourier transform over xm, xh, ym, yh to find P̃ (kxm , kxh
, kym , kyh

, kzm , zh = 0, t = 0) the RTM
uncollapsed migration for a general v(x, y, z) velocity configuration.

RTM AND INVERSE SCATTERING SERIES (ISS) IMAGING: NOW

AND THE FUTURE

In practice, RTM is often applied using a wave equation that avoids reflections at reflectors above
the target. Impedance matching at boundaries in the modeling, allows density and velocity to
both have rapid variation at a reflector, but are arranged so that the normal incidence reflection
coefficient will be zero. The result ia a smooth ’apparent velocity’ that can support diving waves,
but seeks to avoid the discontinuous velocity model commitment that including reflections would
require. In RTM, including those reflections above the reflector to be imaged, drives a need for an
accurate and discontinuous velocity model. The ISS imaging methods welcome (and require) all the
reflectors above the one reflector being imaged, without implying a concomitant need for an accurate
discontinuous velocity model.

One way to view the RTM to Inverse Scattering Series (ISS) (Weglein et al., 2003) imaging step
is as removing reflectionless reflectors by an ’impedance matching’ differential equation in RTM to
avoid the need for a commitment to an accurate and discontinuous velocity. With ISS imaging we
have the opposite situation: the welcome of all reflections to the imaging of any reflector, and without
the need to know or determine the discontinuous velocity model. That is the next step, and our first
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field data tests with ISS imaging are underway. In the interim, we thought it useful to provide an
assist to current best imaging RTM practice. We will be returning reflections to reflectors thereby
turning the problem, observation, and obstacle in current RTM into the instrument of significant
imaging progress, and without the need for a velocity model, discontinuous or otherwise.

SUMMARY

Migration and migration-inversion require velocity information for location and beyond velocity only
for amplitude analyses at depth. So when we say the medium is ’known,’ the meaning of known
depends on the goal: migration or migration-inversion. Backpropagation and imaging each evolved
and then extended/generalized and merged into migration-inversion (Fig. 2).

For one-way wave propagation the double downward continued data, D is

D(at depth) =
∫
Ss

∂G−D0

∂zs

∫
Sg

∂G−D0

∂zg
DdSg dSs , (68)

where D in the integrand = D(on measurement surface), ∂G−D0 /∂zs = anticausal Green’s function
with Dirichlet boundary condition on the measurement surface, s = shot, and g = receiver. For
two-way wave double downward continuation:

D(at depth) =
∫
Ss

[
∂GDN0

∂zs

∫
Sg

{
∂GDN0

∂zg
D +

∂D

∂zg
GDN0

}
dSg

+ GDN0

∂

∂zs

∫
Sg

{
∂GDN0

∂zg
D +

∂D

∂zg
GDN0

}
dSg

]
dSs , (69)

where D in the integrands = D(on measurement surface). GDN0 is neither causal nor anticausal.
GDN0 is not an anticausal Green’s function; it is not the inverse or adjoint of any physical propagating
Green’s function. It is the Green’s function needed for RTM. GDN0 is the Green’s function for the
model of the finite volume that vanishes along with its normal derivative on the lower surface and the
walls. If we want to use the anticausal Green’s function of the two-way propagation with Dirichlet
boundary conditions at the measurement surface then we can do that, but we will need measurements
at depth and on the vertical walls. To have the Green’s function for two-way propagation that doesn’t
need data at depth and on the vertical sides/walls, that requires a non-physical Green’s function
that vanishes along with its derivative on the lower surface and walls.

In the Inverse Scattering Series (ISS) model (sketch 4 in Fig. 2) the Lippmann-Schwinger (LS)
equation over all space, rather than Green’s theorem, is called upon and the Lippmann-Schwinger
equation requires no imposed boundary conditions on S since all boundary conditions are already
incorporated in LS from linearity/superposition and causality. See, e.g., Weglein et al. (2003), Stolt
and Jacobs (1980), Weglein et al. (2009), and Weglein et al. (2006).

The appropriate Green’s function, for a closed surface integral in Green’s theorem, with an
arbitrary and known medium within the volume can be satisfied with any Green’s function satisfying
the propagation properties within the volume and with Dirichlet, Neumann, or Robin boundary
conditions on the closed surface. The issue and/or problem in exploration reflection seismology is
the measurements are only on the upper surface.
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Why Green’s theorem for migration algorithms?

1. Allows a wave theoretical platform/framework for wave-field prediction from surface measure-
ments that builds on quantitative and potential field theory history and evolution.

2. Allows (x, ω) processing without transform artifacts and yet is wave theoretic in a (x, ω) world
where up-down is not so simple to define as in (k, ω). Deghosting (Zhang (2007)) and wavelet
estimation (Weglein and Secrest (1990)) are other examples where Green’s theorem provides
(x, ω) advantage.

3. Allows avoidance of very common pitfalls and erroneous algorithm derivations based on qual-
itative (at best) methods launched from Huygens’ principle or discrete matrix inverses and it
allows the wave theoretic imaging conditions introduced by Clayton and Stolt (1981) and Stolt
and Weglein (1985) to be used rather than the lesser cross-correlation of wave-field imaging
concepts.

Backpropagation is quantitative from Green’s theorem rather than these G−1
0 , G∗0, less wave

theoretic more generalized inverse, discrete matrix thinking approaches for backpropagation. For
RTM and Green’s theorem the data, D, at depth is definitely not

D 6=
∫
G−1

0S

∫
G−1

0RD (Huygens) , (70)

where G−0 indicates an anticausal Green’s function. This is OK with Huygens but violates Green’s
theorem and the equation is not dimensionally consistent with the right hand side not having the
dimension of data, D. The data, D, at depth for one-way waves is

D =
∫
Ss

∂G−D0

∂zs

∫
Sg

∂G−D0

∂zg
DdSg dSs (Green) , (71)

where D = Dirichlet boundary condition on top and G−0 anticausal. This is OK with Green but not
for two-way RTM propagation. The data, D, at depth for two-way waves is

D =
∫
Ss

[
∂GDN0

∂zs

∫
Sg

{
∂GDN0

∂zg
D +

∂D

∂zg
GDN0

}
dSg

+ GDN0

∂

∂zs

∫
Sg

{
∂GDN0

∂zg
D +

∂D

∂zg
GDN0

}
dSg

]
dSs (Green) , (72)

where DN = Dirichlet and Neumann boundary conditions to be imposed on bottom and walls and
GDN0 is neither causal nor anticausal nor a combination. Please see Fig. 3.

COMMENTS AND FUTURE DEVELOPMENTS

In this manuscript, we provide a firm foundation for RTM based on Green’s theorem. As in the
case of interferometry (Ramı́rez and Weglein (2009)) misuse, abuse and/or misunderstanding of
Green’s theorem in RTM has also led to strange and curious interpretations, and to opinions being
offered about the cause of artifacts and observed problems and communicating ’deep new insights’
that are neither new nor accurate. We communicate here to simply understand and stick with
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Green’s theorem as the guide and solution in both cases, interferometry and RTM. The original
RTM methods of running the wave equation backwards with surface reflection data as a boundary
condition is not a wave theory method for wave-field prediction, neither in depth nor in reversed
time. In Huygens’ principle the wave-field prediction doesn’t have the dimension of a wave-field. In
fact that idea corresponds to the Huygens’ principle idea (Huygens (1690)) which was made into a
wave theory predictor by George Green in 1826.

ACKNOWLEDGEMENTS

We thank the M-OSRP sponsors, NSF-CMG award DMS-0327778 and DOE Basic Sciences award
DE-FG02-05ER15697 for supporting this research. R. H. Stolt thanks ConocoPhillips for permission
to publish. We thank Lasse Amundsen of Statoil and Adriana Ramı́rez and Einar Otnes of West-
ernGeco for useful discussions and suggestions regarding RTM. We thank Xu Li, Shih-Ying Hsu,
Zhiqiang Wang and Paolo Terenghi of M-OSRP for useful comments and assistance in typing the
manuscript.

16



APPENDIX A: CONFIRMATION THAT THE GREEN’S FUNCTION

EQ. (14), WHEN USED IN GREEN’S THEOREM, WILL PRODUCE

A TWO-WAY WAVE FOR A < Z < B WITH ONLY MEASUREMENTS

ON THE UPPER SURFACE.

P (z, ω)

=
∫ b

a

dz′

−1
2ik

e−ikzeikz
′
+

1
2ik

eik|z−z
′|︸ ︷︷ ︸

G0(z,z′,ω)

 ρ(z′, ω)︸ ︷︷ ︸
0

+|ba

(Aeikz
′
+Be−ikz

′︸ ︷︷ ︸
P (z′,ω)

)

−1
2ik

e−ikzeikz
′
ik +

1
2ik

eik|z−z
′|ik sgn(z − z′)(−1)︸ ︷︷ ︸

dG0(z,z′,ω)
dz′



−

−1
2ik

e−ikzeikz
′
+

1
2ik

eik|z−z
′|︸ ︷︷ ︸

G0(z,z′,ω)

 (Aeikz
′
ik +Be−ikz

′
(−ik)︸ ︷︷ ︸

dP (z′,ω)
dz′

)


=
−1
2
|ba(���

��
Aeik(2z′−z) +A sgn(z − z′)eikz′eik|z−z′|

+Be−ikz +B sgn(z − z′)e−ikz′eik|z−z′|

−����
�

Aeik(2z′−z) +Aeikz
′
eik|z−z

′| +Be−ikz −Be−ikz′eik|z−z′|)

=
−1
2

(A sgn(z − b)︸ ︷︷ ︸
−1

eikbe

ik |z − b|︸ ︷︷ ︸
b−z

+���
�

Be−ikz +B sgn(z − b)︸ ︷︷ ︸
−1

e−ikbe

ik |z − b|︸ ︷︷ ︸
b−z

+Aeikbe

ik |z − b|︸ ︷︷ ︸
b−z +���

�
Be−ikz −Be−ikbe

ik |z − b|︸ ︷︷ ︸
b−z

−A sgn(z − a)︸ ︷︷ ︸
1

eikae

ik |z − a|︸ ︷︷ ︸
z−a

−����Be−ikz −B sgn(z − a)︸ ︷︷ ︸
1

e−ikae

ik |z − a|︸ ︷︷ ︸
z−a

−Aeikae
ik |z − a|︸ ︷︷ ︸

z−a −����Be−ikz +Be−ikae

ik |z − a|︸ ︷︷ ︸
z−a )

=
−1
2

(−����
�

Aeik(2b−z) −Be−ikz +���
��

Aeik(2b−z) −Be−ikz

−Aeikz −((((((Be−ik(2a−z) −Aeikz +((((
((

Be−ik(2a−z))

=
−1
2

(−2Aeikz − 2Be−ikz)

= Aeikz +Be−ikz
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APPENDIX B: EVALUATING A1, B1, C1, AND D1 IN EQ. (39).

For z′ > a choose C1 and D1 such that

G(z,B, ω) = 0 and[
dG

dz′
(z, z′, ω)

]
z′=B

= 0

=⇒ T

2ik
eik|a−z|eik1(B−a) + C1e

ik1B +D1e
−ik1B = 0

T

2ik
eik|a−z|eik1(B−a)ik1 + C1e

ik1Bik1 +D1e
−ik1B(−ik1) = 0

=⇒ C1e
ik1B +D1e

−ik1B = − T

2ik
eik|a−z|eik1(B−a)

C1e
ik1B −D1e

−ik1B = − T

2ik
eik|a−z|eik1(B−a)

Adding and subtracting give

2C1e
ik1B = − 2T

2ik
eik|a−z|eik1(B−a)

C1 = − T

2ik
eik|a−z|e−ik1a

2D1e
−ik1B = 0

D1 = 0

For z′ = a choose A1 and B1 such that

G(z, a, ω)|z′<a = G(z, a, ω)|z′>a and[
dG

dz′
(z, z′, ω)

]
z′<a at z′=a

=
[
dG

dz′
(z, z′, ω)

]
z′>a at z′=a

=⇒ eik|a−z|

2ik
+R

1︷ ︸︸ ︷
e−ik(a−a)

2ik
eik(a−z) +A1e

ika +B1e
−ika

=
T

2ik
eik|a−z| eik1(a−a)︸ ︷︷ ︸

1

+ C1︸︷︷︸
−(T/2ik)eik|a−z|e−ik1a

eik1a + D1︸︷︷︸
0

e−ik1a

eik|a−z|

2ik
ik sgn(a− z) +R

1︷ ︸︸ ︷
e−ik(a−a)

2ik
(−ik)eik(a−z) +A1e

ikaik +B1e
−ika(−ik)

=
T

2ik
eik|a−z| eik1(a−a)︸ ︷︷ ︸

1

ik1

+ C1︸︷︷︸
−(T/2ik)eik|a−z|e−ik1a

eik1aik1 + D1︸︷︷︸
0

e−ik1a(−ik1)
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=⇒ eik|a−z|

2ik
+

R

2ik
eik(a−z) +A1e

ika +B1e
−ika =

T

2ik
eik|a−z| − T

2ik
eik|a−z| = 0

1
2
sgn(a− z)eik|a−z| − R

2
eik(a−z) +A1ike

ika −B1ike
−ika =

Tik1

2ik
eik|a−z| − Tik1

2ik
eik|a−z| = 0

=⇒ A1e
ika +B1e

−ika = −e
ik|a−z|

2ik
− R

2ik
eik(a−z)

A1e
ika −B1e

−ika = − 1
2ik

sgn(a− z)eik|a−z| + R

2ik
eik(a−z)

Adding and subtracting give

2A1e
ika = − 1

2ik
eik|a−z|(1 + sgn(a− z))

A1 = − 1
4ik

e−ikaeik|a−z|(1 + sgn(a− z))

2B1e
−ika = − 1

2ik
eik|a−z|(1− sgn(a− z))− 2R

2ik
eik(a−z)

B1 = − 1
4ik

eikaeik|a−z|(1− sgn(a− z))− 2R
4ik

eik(2a−z) = − 1
4ik

(eikaeik|a−z|(1− sgn(a− z)) + 2Reik(2a−z))

Check:

G(z, a, ω)|z′<a −G(z, a, ω)|z′>a

=
eik|a−z|

2ik
+

R

2ik
eik(a−z) +

(
− 1

4ik
e−ikaeik|a−z|(1 + sgn(a− z))

)
eika

+
(
− 1

4ik
(eikaeik|a−z|(1− sgn(a− z)) + 2Reik(2a−z))

)
e−ika

− T

2ik
eik|a−z| −

(
− T

2ik
eik|a−z|e−ik1a

)
eik1a − (0)e−ik1a

=
1

2ik
eik|a−z|︸ ︷︷ ︸

cancels 1

+
R

2ik
eik(a−z)︸ ︷︷ ︸

cancels 2

− 1
4ik

eik|a−z|︸ ︷︷ ︸
cancels 1

− 1
4ik

eik|a−z|sgn(a− z)︸ ︷︷ ︸
cancels 3

− 1
4ik

eik|a−z|︸ ︷︷ ︸
cancels 1

+
1

4ik
eik|a−z|sgn(a− z)︸ ︷︷ ︸

cancels 3

− 2R
4ik

eik(a−z)︸ ︷︷ ︸
cancels 2

− T

2ik
eik|a−z|︸ ︷︷ ︸

cancels 4

+
T

2ik
eik|a−z|︸ ︷︷ ︸

cancels 4

=0 as desired
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Figure 1: Two dimensional finite volume model
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Figure 2: Backpropagation model evolution
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Figure 3: Qualitative vs. quantitative wave propagation:

(Left) Huygens (1690), and e.g., Whitmore (1983), McMechan (1983), Fletcher et al. (2006),

Berkhout (1997), Claerbout (1992), Dong et al. (2009), Luo and Schuster (2004)

(Right) Green (1828), and e.g., Morse and Feshbach (1953), Born and Wolf (1999), Stolt (1978),

Schneider (1978), Esmersoy and Oristaglio (1988), Weglein and Secrest (1990), Weglein et al.

(1997), Liu et al. (2006), Ramı́rez and Weglein (2009), and Weglein et al. (2011)

23



Green’s theorem derived methods for preprocessing seismic data when the pressure
P and its normal derivative are measured
James D. Mayhan∗, Paolo Terenghi∗, Arthur B. Weglein∗, and Nizar Chemingui†, M-OSRP/Physics Dept./UH∗

and PGS†

Summary

We discuss deghosting of marine seismic data using
Green’s theorem. Deghosting is put into context
in the complete M-OSRP processing chain, Green’s
theorem derived theory is presented, and an algorithm
implementing the theory is discussed. The algorithm has
been tested on field data and several kinds of synthetic
data with positive and encouraging results.

Introduction

The inverse scattering series (ISS) can perform certain
tasks (e.g., free surface multiple elimination) without a
priori estimates of the spatial distribution of velocity. The
Mission-Oriented Seismic Research Program (M-OSRP)
has generated algorithms to accomplish seismic data
processing goals based on the ISS (free surface multiple
elimination, internal multiple removal, depth imaging,
nonlinear direct AVO, and Q compensation) and Green’s
theorem (deghosting, source signature estimation, and
data reconstruction). While the ISS is independent
of subsurface velocity (and in fact of all subsurface
properties), it is data dependent and makes certain
assumptions about its input data. Weglein et al. (2003)
describe how every ISS isolated task subseries requires (1)
the removal of the reference wavefield, (2) an estimate of
the source signature and radiation pattern, and (3) source
and receiver deghosting and how the ISS has a nonlinear
dependence on these preprocessing steps. Therefore,
the Green’s theorem deghosting methods are critically
important to the success of the inverse series methods
since they may be used to bring seismic data in line with
the assumptions of inverse scattering. The fact that the
ISS is nonlinear places a higher bar on preprocessing. An
error in the input to a linear process creates a linear error
in its output, but the same error in ISS input creates
linear, quadratic, cubic, etc. errors in its output.

A brief aside on terminology. The total wavefield P
consists of the reference wavefield P0 (which doesn’t
experience the earth) and the scattered wavefield Ps

(which does experience the earth). Ghosts begin their
propagation moving upward from the source (source
ghosts) or end their propagation moving downward to
the receiver (receiver ghosts) or both (source/receiver
ghosts) and have at least one upward reflection from the
earth. Free surface multiples have at least one downward
reflection from the free surface (air-water interface) and
at least one upward reflection from the earth. Internal
multiples have no downward reflections from the free

surface, more than one upward reflection from the earth,
and at least one downward reflection from inside the
earth. An nth order internal multiple has n downward
reflections from the earth. Primaries have only one
upward reflection from the earth.

The freedom of choosing a convenient reference medium
means Green’s theorem offers a flexible framework for
defining a number of useful algorithms — wavefield
separation (reference and scattered), wavelet estimation,
ghost removal, and two way wavefield continuation
(RTM). Green’s theorem methods are exact (fully
consistent with the wave equation), multidimensional,
make no assumptions about the earth, and work in the
(ω, r) data space (and hence are simple to apply to
irregularly spaced data). Therefore, Green’s theorem
preprocessing methods and ISS isolated task subseries are
fully consistent.

This paper is focused on the deghosting prerequisite.
Deghosting is important because (1) it is a prerequisite
for many processing algorithms including data driven
multiple elimination (ISS free surface multiples and
internal multiples and SRME) and imaging (wavefield
continuation often assumes one way waves), and (2)
removing the downward component of the field enhances
seismic resolution and boosts the low frequencies.
Deghosting has benefit for both traditional seismic
processing as well as providing an important role in all
ISS based isolated task processing. For a discussion of
the ISS see Liu et al. (2011).

Theory

The ISS is based on perturbation theory, and Green’s
theorem based preprocessing utilizes perturbation theory.
A reference medium (and its associated Green’s function)
is chosen to facilitate solving the problem at hand,
and the perturbation is the real world properties
minus the reference medium. Within that framework,
Green’s theorem based preprocessing is remarkably wide
ranging. For example, Fig. 1 shows the configuration
chosen for Green’s theorem deghosting. Choosing a
reference medium consisting of a whole space of water,
a hemispherical surface of integration bounded below by
the measurement surface, and the prediction/observation
point inside the surface of integration gives deghosted
data P deghosted. A different choice of a reference
medium (a half space of air and a half space of water
and the prediction/observation point outside/inside the
surface of integration) gives wavefield separation in which
the total wavefield P is separated into the reference
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wavefield P0 and scattered wavefield Ps. It should be
noted that several processing algorithms for multiple
elimination (including the ISS) assume deghosting has
been performed on the data and that an accurate estimate
of the source wavelet is available.

Fig. 1: Configuration for deghosting using Green’s theorem
(Zhang, 2007). αair and αearth are perturbations, the
differences between the actual medium (air, water, earth) and
reference medium (water).

Deghosting (both receiver and source side) is based on
Zhang and Weglein (2005), Zhang and Weglein (2006),
and Zhang (2007). The theory assumes measurement
of the pressure wavefield P and its normal derivative
∂P/∂n ≡ ∇P (r′, rs, ω) · n̂ where r′ is the measurement
point, rs is the location of the air gun array, and n̂ is
the normal to the measurement surface. The reference
medium is a whole space of water (where a causal, analytic
solution exists for the acoustic wave equation) and the
prediction point is between the free surface and the
measurement surface, i.e., inside the volume V bounded
by the closed surface of integration consisting of the
measurement surface and dashed line in Fig. 1.

Using the above configuration and Green’s theorem gives
the key equation

P deghosted(r, rs, ω) =

∮
S

dS n̂· (1)

[P (r′, rs, ω)∇′Gd
0(r, r′, ω)−Gd

0(r, r′, ω)∇′P (r′, rs, ω)],

(Zhang, 2007, Eq. (2.23)) where r is the prediction
point, rs is the location of the air gun array, S is
the closed surface consisting of the measurement surface
and dashed line in Fig. 1, n̂ is the normal to S
(pointing away from the enclosed volume V), r′ is the
measurement point, and Gd

0 is a whole space Green’s
function. Extending the radius of the hemisphere to
infinity, invoking the Sommerfeld radiation condition, and
assuming a horizontal measurement surface, the integral
over the closed surface becomes an integral over the

measurement surface:

P deghosted(r, rs, ω) =

∫
m.s.

dS (2)

[P (r′, rs, ω)
∂

∂z′G
d
0(r, r′, ω)−Gd

0(r, r′, ω)
∂

∂z′P (r′, rs, ω)]

(Zhang, 2007, Eq. (2.24)). In 3D Gd
0(r, r′, ω) =

−1/(4π) exp (ikR+)/R+ where k = ω/c0, c0 is the speed
of sound in the reference medium, and R+ = |r − r′|.
In 2D Gd

0(r, r′, ω) = −i/4H(1)
0 (kR+) where H

(1)
0 is the

zeroth order Hankel function of the first kind (Morse and
Feshbach, 1953, pp. 810-811).

The implementation of the above theory is done in
a straightforward manner. The Green’s theorem
algorithm computes the surface integral in Eq. (2). The
method requires two wavefields as input, the pressure
measurements P and their normal derivatives ∂P/∂z′.
The latter requires dual sensor cables or dual streamer
cables. Source side deghosting is straightforward and
amounts to applying reciprocity to exchange sources and
receivers. Our illustrations will focus on receiver side
deghosting.

Example: Flat layer model

The left panel of Fig. 2 shows synthetic data (produced
using ray tracing in a flat layer model) designed so that
deghosting is easy to demonstrate. The depth of the
receivers is chosen such that primaries and ghosts appear
as distinct seismic events. The right panel of Fig. 2 shows
Green’s theorem output using Eq. (2; note the primary’s
receiver side ghost at 0.45s and the free surface multiple’s
receiver side ghost at 0.85s are suppressed. Fig. 3 shows
the spectra of the input data (blue) and receiver side
deghosted output (red). As expected, the receiver side
deghosted data fills in notches related to receiver ghosts.

Fig. 2: Flat layer model (source at 30m, cable at 140m, water
bottom at 300m): input data at 110m (left), receiver side
deghosted at 100m (right).

Green’s theorem derived methods
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Fig. 3: Flat layer model: muted input data (blue), receiver side
deghosted (red). The receiver notches (at intervals of 5.4Hz)
have been filled in; the notch at 25Hz is a source notch.

Example: SEAM application

We applied Green’s theorem to the SEAM dataset
generated based on a deepwater Gulf of Mexico earth
model (Fig. 4) (Society of Exploration Geophysicists,
2011). We used the special SEAM classic dataset modeled
to simulate dual sensor acquisition by recording the
pressure wavefield at two different depths, 15 and 17m
respectively. This dual sensor data consisted of nine
sail lines for an equivalent wide azimuth towed streamer
survey. The source interval is 150m by 150m while
the receiver interval is 30m in both inline and crossline
directions. Fig. 5 displays a typical shot gather from the
SEAM model. Given the low frequency of the data (less
than 30Hz) and the source and receiver depths of 15m
and 17m, the ghost reflections are not as separable as in
the previous flat layer model. In this situation, successful
deghosting would correspond to a change in the wavelet
shape. Fig. 6 shows SEAM input (a window of Fig. 5) and
receiver side deghosted output computed by the Green’s
theorem approach. In the right panel of Fig. 6, note the
collapsed wavelet. In Fig. 7, note the increased amplitude
in lower frequencies and decreased amplitude in higher
frequencies, i.e., the shift of the amplitude spectrum
towards low frequencies. This is supported by the integral
formulation in Eq. (2) which acts like a low pass filter.

Example: Field data

We also applied the deghosting approach to a field
survey from the deep water Gulf of Mexico. The data
were acquired using dual sensor streamers comprised of
hydrophones and vertical geophones. The left panel in
Fig. 8 shows a close up on an input shot record while
the right panel displays the same traces after receiver
side deghosting. Note the collapsed wavelet in the output
image. This is also demonstrated in Fig. 9 that compares
the amplitude spectra before and after deghosting. As
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Fig. 5: SEAM data, shot 130305 (located at sx=16975m,
sy=20000m, sz=15m near center of shot grid).

expected, the deghosting solution successfully removed
the notches from the spectrum that are associated with
the receiver ghost.

Conclusions

We have implemented deghosting based on Green’s
theorem and have tested the algorithm on field data and
several kinds of synthetic data. Testing to date has shown
the algorithm works as expected.
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Fig. 6: SEAM data, shot 130305: recorded data (top), receiver
side deghosted at free surface (bottom). Note the collapsed
wavelet in the bottom panel.

Fig. 7: SEAM data: shot 130305: recorded data (blue),
receiver side deghosted (red). Note the shift of the spectrum
towards lower frequencies (first receiver notch is at 50 Hz).

Fig. 8: Field data: hydrophones (top), receiver side deghosted
at free surface (bottom). Note the collapsed wavelet in the
bottom panel. Input data courtesy of PGS.
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Fig. 9: Field data: muted hydrophones (blue), receiver side
deghosted (red). The receiver notches around 30 Hz, 60 Hz,
and 90 Hz have been filled in. Input data courtesy of PGS.
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The inverse scattering series approach to removing internal multiples: delineating and defining its
current stand-alone capability, and proposing a plan for additional added value for land application
Arthur B. Weglein∗, Paolo Terenghi ∗, Shih-Ying Hsu∗, Yi Luo†, and Panos G. Kelamis†, M-OSRP, University of
Houston∗ and Saudi Aramco†

SUMMARY

This paper is a follow-up to Fu et al. (2010). In the latter
paper, the capability of the inverse scattering series (ISS)
internal multiple attenuation method was demonstrated on
complex synthetic and land field data. In this paper, we
further delineate and exemplify what is behind the ISS internal
multiple capability and offer a strategy and plan for addressing
open and outstanding issues.

INTRODUCTION

The industry trend to explore in deep water with plays that
involved targets beneath or at complex and rapid varying
boundaries caused many traditional multiple removal methods
to bump up against their assumptions and to breakdown and
fail. In addition, the estimation and removal of land internal
multiples can make the toughest marine multiple problem
pale in comparison. In Kelamis et al. (2006) the basic
cause of that land multiple removal challenge was identified
as a series of complex thin layers encountered in the near
surface. New methods were needed to respond to these
challenges. These methods need to satisfy the following
criteria: (1) operate in multi-D, (2) have absolutely no need
for subsurface properties, including no multiple generators, no
layer properties, nor in any way partially or entirely determine
those properties, i.e., not in stages through, e.g., stripping;
(3) have no need for picking and interpretive intervention,
(4) accommodate the broadest set of multiples of all orders
with model type independent algorithms; (5) the meaning
of primaries and multiples themselves can be extended to a
multi-D earth (Weglein and Dragoset, 2005), and (6) multiples
are surgically removed by predicting their amplitudes and
phases, and thus do not harm primaries, even if they are
proximal and overlapping. The efficacy/responsiveness to
complex land and marine multiple removal challenges depends
on how well the method under consideration satisfies (1)-(6).

Several different methods were developed for internal multiple
attenuation/removal. The first group requires the user to
identify the primaries as internal multiple sub-events or the
portion of the earth responsible for the internal multiple’s
downward reflection. The internal multiple reflects off
different reflectors which are defined as the ‘generator’ of the
internal multiple. In this first set of methods the interpretation
and picking of travel-times is central and paramount and it
makes use of only total travel times and produces a kinematic
estimate of an internal multiple’s phase (but not the amplitude)
(pioneered by Keydar et al. (1997) and then promulgated by
Jakubowicz (1998)). Within that group reside the DELPHI
feedback loop methods, which use the picked travel-times
to downward continue the wave-field towards the generator
(Berkhout and Verschuur, 2005) [boundary approach] or

towards a chosen reference level (Berkhout and Verschuur,
2005; Kelamis et al., 2002) [layer approach]. In the DELPHI
layer approach, ‘a layer’ is chosen, and the prediction operator
for first order internal multiples will only allow the downward
generator to be within the layer and all upward generators
must be below the layer, thus not accommodating the removal
of internal multiples whose up and down generators are both
within the layer. The chosen phantom layer is fixed or ‘static’.
The vision behind the latter important methodology is that
the complete removal of internal multiples requires a stripping
feedback procedure, exactly mimicking and extending the free
surface multiple case. This requires complete knowledge of
the medium down to, and detailed determination at, the imaged
reflector in depth, that would allow each reflector in turn
to be removed (transformed away) along with those internal
multiples that have their shallowest downward reflection at
that reflector. The DELPHI reference level/boundary approach
or the layer approach never capture the same set of first
order internal multiples as the ISS methods; see e.g., Matson
(2003), Fu et al. (2010) and the examples in this paper.
Furthermore, the fundamental DELPHI theoretical feedback
framework remains, that is, if you want to move beyond
attenuate and towards eliminate, for all internal multiples,
excluding none, one returns to a layer stripping prescription
which requires a layer by layer determination of all the earth
mechanical properties, i.e. velocity, density, and Q. Under
certain circumstances, when the generators are simple and few
and easy to identify, the DELPHI boundary or phantom layer
methods can be the appropriate method of choice, due to its
relative speed that may offset any need for picking and other
compromises.

The second approach and group of algorithms derive as
task specific subseries of the inverse scattering series
(ISS). The distinct ISS free surface and internal multiple
removal algorithms are not only independent of subsurface
information, they are independent of earth model type
(Weglein et al., 2003, pp R46-R62). In Fu et al. (2010) and
Weglein et al. (2003) the background, history and contributors
to the distinct ISS algorithms are provided for removing
free surface and internal multiples. The conclusion of Fu
et al. (2010) was that ”the ISS internal multiple attenuator
method, demonstrated effectiveness on synthetic and field
data, where other internal multiple methods were unable to
demonstrate similar effectiveness”. That was the first land
field data test of ISS internal multiple attenuation. That
internal multiple capability fits in the toolbox alongside ISS
free-surface complex synthetic and marine field data tests for
amplitude and phase fidelity (Carvalho, 1992; Carvalho et al.,
1992; Weglein et al., 1997; Matson et al., 1999; Weglein
et al., 2003; Weglein and Dragoset, 2005; Zhang and Weglein,
2005, 2006). The ISS multiple removal methods satisfy
all of the ‘wish list’ criteria (1-6) required to address the
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challenges described in the introduction, and it is the only
candidate with those properties. That explains its efficacy
and stand-alone capability. The important paper on internal
multiples by ten Kroode (2002) proposes a derivation of
the Weglein et al. (1997) paper. ten Kroode (2002) keeps
the lower-higher-lower thinking of Weglein et al. (1997), is
automatic and without interpretive intervention, but shares
with Keydar et al. (1997) the use of total travel time. The use
of total travel time is a shortcoming that will ignore and miss
certain internal multiples that the vertical time relationship of
Weglein et al. (1997) will automatically accommodate and
remove. That difference and omission is explicitly pointed
out in the examples section of this paper. This paper further
defines and illustrates these ISS properties and characteristics
for removing internal multiples.

METHOD

The ISS internal multiple attenuation algorithm for first order
internal multiple prediction in a 2D earth is given by Araújo
(1994); Araújo et al. (1994); Weglein et al. (1997),

b3(kg,ks,ω) =
1

(2π)2

Z ∞

−∞

Z ∞

−∞
dk1e−iq1(zg−zs)dk2eiq2(zg−zs)

×
Z ∞

−∞
dz1b1(kg,k1,z1)ei(qg+q1)z1

×
Z z1−ε

−∞
dz2b1(k1,k2,z2)e−i(q1+q2)z2

×
Z ∞

z2+ε
dz3b1(k2,ks,z3)ei(q2+qs)z3 ,

where ω is temporal frequency; kg and ks are the
horizontal wavenumbers for source and receiver coordinates,
respectively; the vertical source and receiver wavenumbers, qg

and qs, are given by qi = sgn(ω)
q

ω2/c2
0 − k2

i for i = (g,s);
c0 is the constant background velocity; zs and zg are source
and receiver depths; and zi (i = 1,2,3) represents pseudodepth
(depth location given by migration with background velocity).
The quantity b1(kg,ks,z) corresponds to an uncollapsed
prestack Stolt migration (Weglein et al., 1997) of an effective
plane-wave incident data (data scaled by an obliquity factor),
b1(kg,ks,qg + qs) = −2iqsD(kg,ks,ω), where D(kg,ks,ω) is
the Fourier transformed prestack data.

Properties of the first order term - uncollapsed FK
migration

Stolt uncollapsed migration resolves many complicated wave
phenomena within a constant velocity overburden such
as diffractions and multi-pathing. One example of such
phenomena is the bow-tie pattern generated by reflections
over a sufficiently curved boundary. These effects are
common in seismic exploration data and can occur in a variety
of geological features, including salt domes, faults, layer
terminations, pinch-outs, fractured and/or irregular volcanic
layers and for a rough sea-bottom. As we mentioned,
several internal multiple removal algorithms require picking
of events and travel times. In some of those methods (Keydar
et al., 1997) the picked travel-times are directly used to
mute the wave-field at earlier or later times with respect

1z 3z

2z
1c

2c

0c
sx gx

Figure 1: An internal multiple (solid blue) satisfying
monotonicity in vertical time but not in total travel time. If
wave-speed c1 is much greater than c0, the (dashed blue)
and (dashed green) primaries arrive at the surface earlier than
the (dashed red) primary. The multiple is removed by the
ISS method, but not by methods based on total travel time
monotonicity.

to the generator, and internal multiples are predicted using
auto and cross-correlation operations between traces from the
resulting fields. In others, e.g the feedback methods, the
travel times are used to determine approximated re-datuming
operators. However, all these approaches are based on
the implicit assumption that a one-to-one relationship exists
between seismic events (their travel-time) and the earth
features that create them (such as layer boundaries). In the
presence of diffractions and/or multi-pathing, a one-to-one
relationship does not exist, as e.g. a single curved interface
can produce several seismic arrivals. Picking events, travel
times and generators is generally not recommendable even in a
normal incidence experiment in a 1D earth, since destructively
interfering primary and multiple events are possible and even
prevalent in land field data tests (see, e.g., Kelamis et al.,
2006; Fu et al., 2010). The ISS method, with its automatic
amplitude and phase prediction, and no picking of events nor
generators, has no problem and surgically removes multiples
that are isolated or interfering with other events.

Example1: internal multiples from curved or rugose surfaces

We present an example based on a simple 3-layer earth model
where the shallowest interface is sine-shaped. The model
in Figure 3(a) produces the data in Figure 3(b) where all
seismic events except the second primary at 2.2s can be
traced back to their origin at the shallow reflector. Clearly,
in this example it is an issue to pick a unique travel-time to
represent the curved reflector, as many events are generated,
which interfere among themselves and even with the second
primary. The ISS method provides a natural solution to
that problem by using as input the uncollapsed prestack FK
water speed migration (Figure 3(c)). The sketch in Figure 1
describes the case of an internal multiple which would not be
predicted if total travel-times were the basis of the method.
The multiple can be shown to trace back to an earth feature
where the relationship between total travel-times and vertical
travel-times (pseudo-depth) is inverted due to the presence of
a high velocity layer at depth.

Properties of the leading (third) order term

Let z1, z2 and z3 be the pseudo-depths of three generic
points in the first order term of the internal multiples series
(un-collapsed constant-velocity pre-stack migration). As
those points span the entire data volume, the leading order
attenuation algorithm (which is third order in the imaged
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Figure 2: Earth model (a) and event labeling (b) used in
Example2. Densities are chosen to yield a vertical-incidence
reflection coefficient of 0.8 at all layer boundaries.

data) allows any combination such that z1 > z2 and z3 > z2
to contribute the prediction (lower-higher-lower constraint).
In contrast with the methods based on the convolution and
correlation of wave-fields, where the definition of the generator
is static, the ISS algorithm’s lower-higher-lower constraint
does not refer to any particular interface or event in the
data. On the contrary, it applies to all of their water-speed
images and therefore allows the simultaneous prediction of all
first order internal multiples from all depths at once without
requiring interpretation and travel-time picking of the data or
knowledge of the medium.

Example2: a complete one-step prediction

We demonstrate the properties of the ISS internal multiple
prediction algorithm and its difference with the phantom layer
approach (Berkhout and Verschuur, 2005; Kelamis et al., 2002)
using a set of acoustic 3D finite-difference data. The model
(shown in Figure 2) is composed of four layers delimited by
three interfaces, the first of which has a gap approximately
1.5km long and 100m deep. In Figure 2(b), the travel paths
of several internal multiples are drawn schematically using up
and down-going arrows representing wave propagation. In a
zero offset section of the data (Figure 4(a)) a first train of
closely spaced internal multiples (characterized by the pattern
2[12]n) can be shown to originate from the energy reflected
between the two shallow reflectors (1) and (2). A deeper
reflector (3) causes the entire train to begin again at around 1.4s
(3[12]n trend) and once more at 2.1s (313[12]n and 323[12]n
trends). In general, even in a simple three-interface earth
model, the number of reverberations recorded at the surface is
extremely large as a result of the various ways three reflectors
can be combined to form internal multiples. The ISS internal
multiple algorithm predicts all of them at once, without any
interpretation required on the data, as shown in Figure 4(b)
and 4(c). It is useful to observe that the feedback phantom
layer approach and algorithms cannot achieve the same result
for any choice of ‘layer’, even when two or more primaries
such as events (1) and (2) form a layer of downward reflecting
generators. Figure 5(a) shows the four types of first-order
internal multiples generated within a three-reflector earth. If
the downward-reflecting layer is chosen to close between
the first and second reflectors, the layer-related method can
predict the three types of first-order internal multiples shown in
Figure 5(b). Notice that for any choice of downward-reflecting
layer, there is at least one type of first-order internal multiple
which cannot be predicted with the phantom layer approach.

Although these missed multiples that are not predicted in
the feedback phantom layer method might seem like some
academic nitpick of little real world consequence, in fact this
observation is of tremendous practical significance, and the
root cause behind the Fu et al. (2010) conclusion on ISS
internal multiple effectiveness and stand alone added-value on
complex land near surface internal multiple generators.

CONCLUSIONS

In this paper, we continued the Fu et al. (2010) examination
of inverse scattering series (ISS) internal multiple capability,
in general, and specifically for addressing the daunting
challenges of land data with its plethora of complex near
surface thin layer internal multiple generators. We describe
a set of ‘wish list’ qualities that the ideal response to pressing
and prioritized land and marine multiple removal challenges
would satisfy, and show how only the ISS internal multiple
method reaches that high bar and standard. All methods
have strengths and shortcomings, and as we recognize the
shortcomings of the current ISS attenuator, we know that
removing the shortcoming resides within the ISS and that
upgrade will never require subsurface information, picking
events or any interpretive intervention, or stripping as well.
What all the ISS methods require is a reasonable source
signature, and we are developing onshore Green’s theorem
methods for that purpose. Adaptive energy minimizing criteria
are often employed in an attempt to bridge the conditions and
limitations of the real world and the physics behind what our
algorithms are assuming. When first introduced by Verschuur
et al. (1992) and Carvalho and Weglein (1994) the need was
clear and good benefit was derived, especially with isolated
primaries and free surface multiples of first order. But as with
all assumptions, today’s reasonable and necessary assumption
will invariably be tomorrow’s impediment to progress and
increased effectiveness. And that’s the case with adaptive
subtraction today, especially with land internal multiples. We
advocate a three pronged response to land internal multiples:
(1) seeking further capability for amplitude fidelity for all
orders of internal multiples, including converted wave internal
multiples, (2) satisfy prerequisites for the source signature and
radiation pattern, and (3) look for a new ‘bridge’ to replace
the energy minimization adaptive criteria, a bridge that is
consistent with the underlying physics rather than runs at cross
purposes with the greatest strength of the ISS prediction. Our
plan is to progress each of these three issues as a strategy
to extend the current encouraging results and allow ISS
multiple removal to reach its potential: to surgically remove all
multiples without damaging primaries under simple, complex
and daunting land and marine circumstances.
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Figure 3: (a) Velocity model used in Example1. (b): zero offset section of the input data; (c): zero offset section of the water-speed
FK migration, first order term in the ISS internal multiple algorithm.

(a) (b) (c)

Figure 4: Zero offset sections from Example2. (a) input data, (b) predicted multiples and (c) labeling of events.

(a) (b) (c)

Figure 5: (a): four type of first-order internal multiples are generated by three reflectors. (b) and (c): the first-order internal multiples
predicted by the feedback layer method using different definitions of the downward generator layer (red dashed lines).
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SUMMARY

In Weglein et al. (2010) an update and status report were
provided on the progress on the inverse scattering series (ISS)
direct depth imaging without the velocity model.
In that report, results on synthetics with sufficient realism
indicated that field data tests were warranted. This paper
documents those first field data tests. These first early tests are
encouraging and indicate that ISS direct depth imaging on field
data is possible. The next steps, and open issues, on the road
between viable and providing relevant and differential added
value to the seismic tool-box are described and discussed.

INTRODUCTION / BACKGROUND

All currently applied direct depth imaging methods and
indirect imaging concepts firmly believe that depth and
velocity are inextricably linked. That cornerstone of all current
imaging means that any direct imaging method requires an
accurate velocity model to produce an accurate image in depth.

It is essential to understand the significance of the term ‘direct’
in ‘direct depth imaging’. Given an accurate velocity model,
all current leading-edge imaging methods (e.g., Kirchhoff, FK,
Beam and RTM) are able to directly output the depth (the
actual spatial configuration) of reflectors.

Indirect imaging methods (e.g., flat common image gathers,
differential moveout, CFP, CRS and ‘path integral’
approaches) seek to satisfy a property or condition that
an image with an accurate velocity would satisfy. Those
properties are necessary conditions, but not sufficient, and
hence satisfying the indirect proxy for an adequate velocity
model is not equivalent to knowing the velocity and direct
depth imaging. Hence, satisfying these indirect criteria is
no guarantee, and can lead to the correct depth or to any
one of a set of incorrect depths. The latter truth is rarely (if
ever) spoken and even rarer to find mentioned in print. Most
importantly, these indirect approaches fervently believe that
a direct depth imaging method would require and demand a
velocity model, and that there is absolutely no way around it,
and that depth and velocity are inextricably connected. That
thinking is clear, and 100% correct within the framework of
current imaging concepts and methods.

However, that thinking is superseded by the new broader
framework for imaging provided by the ISS.

Amundsen et al. (2005, 2006, 2008) have developed direct
inversion methods for 1D acoustic and elastic media. The
ISS is the only direct inversion for both a 1D and a multi-D
acoustic, elastic and anelastic earth.

In addition to being direct and applicable and applied for
a multi-D earth, the ISS (Weglein et al., 2003) allows for
all processing objectives (including multiple removal and
depth imaging) to be achieved directly and without subsurface
information.

In the same ‘direct’ sense, that current imaging methods can
directly output the spatial configuration of reflectors with a
velocity model, ISS imaging algorithms can directly output the
correct spatial configuration without the velocity model. It is
the only method with that capability.

The ISS subseries for direct depth imaging communicates that
depth and velocity are not inextricably linked.

The ISS provides a new superseding theory that views the
current velocity-depth relationship and framework as a special
limiting case, as quantum mechanics and relativity view
classical physics as a limiting and special case, within a new
comprehensive and broader platform and framework.

The new broader framework for imaging reduces to current
imaging algorithms when the velocity model is adequate,
and most amazingly it determines on its own for any
particular data set, or portion of a data set, whether the new
framework is needed, or whether the current conventional
imaging framework will suffice. The new imaging framework
determines if its services are called upon, and then and only
then, will it activate the new ISS imaging framework terms
and call them into action.

All current leading edge migration methods, such as, beam,
Kirchhoff and RTM, are linear. The ISS direct depth imaging
without the velocity algorithm is a non-linear relationship
between data and the wavefield at depth.

ISS TASK SPECIFIC SUBSERIES FOR MULTIPLE
REMOVAL, DEPTH IMAGING AND DIRECT
NON-LINEAR AVO

Each and every term and portion of any term within the ISS is
computed directly in terms of data. All tasks associated with
inversion (e.g., multiple removal, depth imaging, non-linear
direct AVO, and Q compensation) are each contained within
the series. Hence, these individual tasks are each achievable
directly in terms of data, without subsurface information.
Every seismic processing objective is carried out as a subseries
of the ISS, and operates without subsurface information, by
involving distinct non-linear communication of the recorded
seismic data. Only the ISS communicates that all seismic
objectives can be achieved in basically the same way that free
surface multiples are removed.

The free surface and internal multiple removal subseries have
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not only been shown to be viable but have also demonstrated
added value and stand alone capability for predicting the
amplitude and phase of multiples (See, e.g., Matson et al.
(1999); Weglein and Dragoset (2005); Fu et al. (2010)), in
particular, demonstrated under complex marine and on-shore
circumstances. In this paper, we examine for the first time the
issue of ISS depth imaging viability on field data.

All conventional imaging methods require knowledge of the
velocity model to determine the spatial locations of reflectors.
Hence, the ISS series project began by assuming that only the
velocity was variable and unknown. Figures 1-3 illustrate the
ISS imaging results for an earth in which only velocity varies.
The algorithms are described in Liu (2006); Liu et al. (2005);
Zhang et al. (2007).

Imaging methods that require the velocity use only the phase
of the data to determine depth. In contrast, all ISS tasks
achieve their goals without subsurface information by using
both the amplitude and phase of seismic data. The latter
difference requires the exclusion of events (and their amplitude
and phase) from imaging subseries that do not relate to or
contribute towards the task of depth imaging. Reflections that
correspond to density only changes must be precluded from
depth imaging tasks. The ISS depth imaging in an acoustic
earth where Vp and density (and for an elastic earth with Vp,
Vs and density), can all vary and all are initially (and remain,
completely) unknown was formulated and the results were
summarized in Weglein et al. (2010).

THE IMPACT OF DATA LIMITATIONS ON ISS
SUBSERIES

Table 1 summarizes the dependence/sensitivity of different ISS
subseries on seismic bandwidth. As the latter table indicates,
there is an increased dependency as we progress from the
ISS free surface multiple case (where the subseries works
one frequency at a time, and has absolutely no concern about
bandlimited data) to the depth imaging subseries where the
absence of low frequency in the data can have a deleterious
effect on the ability of the ISS to move from the original linear
incorrect depth image to the correct depth.

There are many other issues that need to be taken into
consideration in developing practical ISS depth imaging
algorithms. Among these issues are: (1) have the appropriate
number and types of terms from the inverse series been
included to match the imaging challenge due to the difference
between the actual and reference velocity, and the duration
of that difference; and (2) have the density only reflections
been excluded from the ISS depth imaging algorithm. All
of these issues need to be addressed to have the ISS depth
imaging algorithm produce an accurate depth section. When
these requirements are met the ISS image moves until it stops,
and when it stops it’s there. The moveout becomes flat and the
imaging series directly produces a flat common image gather
(CIG) at the correct depth.

In contrast to all current imaging methods where CIG flatness
is a necessary but not a sufficient condition for depth imaging

accuracy, the CIG flatness is a by-product of ISS imaging, and
a necessary and sufficient indication that depth has been found.
It’s a direct depth finding machine, and when it stops it is done.
With ISS imaging CIG flatness is an indication that a direct
method is done, not an in-direct proxy for velocity used to find
the depth, where for the latter conventional use it is necessary
but not sufficient for depth location.

The overriding requirement and number one issue for field
data application of ISS depth imaging is being able to address
the sensitivity to missing low frequency components in the
data (or low vertical wave number). If that low frequency
sensitivity is not addressed, then gathering or not gathering
appropriate and necessary ISS imaging terms or excluding
density only reflections will not matter, and will be of no
practical consequence. Hence, addressing the bandwidth issue
for ISS imaging is the number one priority, the make or
break issue for field data application, viability and delivery
of its promise of high impact differential added value. A
regularization scheme has been developed in Liu and Weglein
(2010) to directly address that low frequency challenge. The
purpose of this paper is to examine whether this regularization
method will allow the ISS imaging algorithms to be effective
and work on field data. Therefore, with this first field data
examination, we relax all of the other requirements for ISS
depth imaging and consider the field data as though it were
generated by a velocity only varying earth. Within that parallel
world where only velocity varies, the ISS depth imaging will
need to address the band-limited nature of field data, and
also will require having enough ISS imaging terms (within an
acoustic velocity only varying subsurface assumption) to be
effective for accurately locating reflectors.

In Figure 4, we present an acoustic model with no density
variations and the water speed migration for the data from that
model. Figure 5 (a) shows the inverse scattering imaging series
ideal result, with full band-width data. In (b), the data has
been altered by a sine squared taper up to 10Hz which damped
the low frequency information and the ISS imaging without
regularization is ineffective. In (c), with the regularization
applied, the ISS depth imaging successfully corrects the data
move-out and reveals the correct depth.

A similar approach is followed for a CMP gather selected
from the Kristin data-set (Figure 7, Majdanski et al. (2010)).
Figure 8 (a) shows a water-speed migration of the data in
Figure 7, while Figure 8 (b) shows the ISS imaging result after
regularization.

Event 1 is the water bottom primary, event 2 is the subwater
bottom primary, event 3 is the internal multiple between event
1 and 2 and event 4 is a third primary. Event 4, the third
primary has a moveout with a water speed migration.

It turns out that event 1, the water-bottom primary, represents
a density change but no velocity change. Hence, the layer
below the water-bottom has the same acoustic velocity as
water. Further, the first order internal multiple (event 3) in that
first sub-water-bottom layer also has a water-speed move out.
Hence, events 1, 2, and 3 all have flat CIGs with a water-speed
FK Stolt migration (Figure 6). Event 4 has move-out due to a
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velocity change at the base of the first sub-water-bottom layer.

With a regularized ISS depth imaging the result for the image
of event 4 is a shifted and CIG flat output. Hence, the ISS
depth imaging is working on the very shallow subsea-bottom
portion of the Kristin data set within the context of a velocity
only varying earth. The shifted ISS image and flat CIG of
event 4, the third primary, indicates that bandwidth issues have
been addressed, and sufficient capture of ISS imaging terms
are within the ISS imaging algorithm. If for this field data
set and ISS depth imaging test, either one of these conditions
(addressing bandwidth sensitivity and adequate inclusion of
ISS imaging terms) were a remaining and outstanding issue,
then event 4 would not have moved and produced a flat CIG.
The success of this test is thus defined. The next steps are
to apply the regularized ISS depth imaging to an acoustic
variable velocity and density model for the very shallow and
sub-water-bottom reflectors, and a Vp, Vs and density varying
elastic earth model for the deeper reflectors, to preclude
density only reflections, and for outputting actual depth.
The M-OSRP imaging research team is engaged in moving
from the current news and report that demonstrates field data
viability for ISS imaging to providing added value. The
ultimate goal is to have ISS imaging match the efficacy that
ISS free surface and internal multiple removal have provided
for the removal of coherent noise, and to extend that capability
for extracting information from signal (the collection of all
primaries).

CONCLUSIONS

In this paper, we have shown that the ISS depth
imaging algorithm can address the most serious practical
limitation/challenge field data will place on ISS depth
imaging: that is, limitations in seismic bandwidth. With
this accomplished, the further steps to extend these tests to
variable density and velocity acoustic and elastic media are
achievable, and realizing that is within the sphere of issues
we can influence and make happen. The most significant
difference between synthetic data and field data for ISS depth
imaging has been addressed.
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Figures

Figure 1: The fault shadow zone model.

Figure 2: The water speed pre-stack FK Stolt migration for the
data from the fault shadow model.

Figure 3: The inverse scattering series image (with partial
capture of ISS imaging capability) for the fault shadow model.
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Figure 4: Figure (a) shows the acoustic model we are testing
for evaluating the dependence of ISS on seismic bandwidth.
Figure (b) is the water speed FK Stolt migration, the red lines
represent the true location of the reflectors.
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Figure 5: This figure illustrates the imaging result for a
velocity varying only earth model. Figure (a) shows ISS
imaging with data which has low frequency information.
Figure (b) shows ISS imaging with band-limited data. Figure
(c) shows the imaging result with the regularization being
applied. This ISS imaging bandwidth issue is documented in
Shaw (2005).
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Figure 6: This figure summarizes the results of the initial ISS
depth imaging tests on the very shallow, near ocean bottom
section of the Kristin data.
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Figure 7: The CMP gather we tested from Kristin data.
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Figure 8: For the Kristin data test: Figure (a) shows water
speed migration. The red line indicate water speed migration
image for event 4. Figure (b) shows ISS imaging result. The
red line shows ISS image for event 4.

Dependence on temporal Specific subseries
frequency content of the data

None Free surface multiple
Very mild Internal mulitple

Some Depth imaging

Table 1: This table shows the dependence of ISS specific
subseries on temporal frequency content of the data.
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Offshore and onshore multiple removal: Responding to the 

challenges 

In offshore exploration, the industry trend to explore in deep water, by itself, with even a flat horizontal water 

bottom and a 1D subsurface, immediately caused many traditional signal processing/statistical based multiple 

removal methods to bump up against their assumptions and break down and fail. In addition, marine exploration 

plays beneath complex multi-D laterally varying media and beneath and/or at corrugated, diffractive rapid varying 

boundaries (for example, subsalt, sub-basalt and subkarsted sediments and fault shadow zones) caused a breakdown 

of many multiple removal methods. Decon, stacking, f-k, Radon transform, and wavefield modeling and subtracting 

multiples are among methods that ran into problems with the violation of any one or combination of the following 

assumptions: (1) primaries are random, and multiples are periodic, (2) knowledge of the velocity of primaries, and 

assuming the earth has no lateral variation in properties, with 1D moveout assumptions, (3) velocity discrimination 

between primaries and multiples, (4) interpreter intervention capable of picking and discriminating primary or 

multiple events, and (5) determining and defining generators of the multiples, and then modeling and subtracting 

multiples. The confluence of : (1) high drilling costs in deep water plays, (2) specific deep water hazards and 

technical challenges, (3) the need to develop fields with fewer wells, and (4) the record of drilling dry holes, drove 

the need for greater capability for removing marine free-surface and internal multiples, as well as improving methods 

of imaging. 

The estimation and removal of land internal multiples can make the toughest marine-multiple problem pale in 

comparison. In Kelamis et al. (2006), Fu et al. (2010), and Luo et al. (2011) the basic cause of the land-multiple 

removal challenge is identified as a series of complex, thin layers encountered in the near surface.  

In general, strong reflectors at any depths can be identified as significant sources of internal multiples, especially 

where geologic bodies with different seismic properties are in contact. Typical examples are alternating sequences of 

sedimentary rocks and basaltic layers or coal seams, which can give rise to short period internal multiples. 

 

If multiples are a problem due to violation of the assumptions behind methods used to remove them, then the idea is 

to either develop new methods that remove the violation, and arrange to satisfy the assumption; or develop 

fundamentally new methods that avoid the limiting or inhibiting assumption altogether. There are cases and issues 

for which one or the other of these attitudes is called for and indicated. An example of seeking to satisfy a requisite is 

when a data acquisition is called for by a multiple removal technique, and you seek methods of data collection and 

interpolation/extrapolation to remove the violation of the need of collecting data by satisfying the requirement. 

However, if a multiple removal method is, for example, innately 1D in nature, then an interest in removing multiples 

in a multi-D earth would call for developing a new method that did not assume a 1D earth, hence, calling for 

developing a new multi-D method that altogether avoids the 1D assumption. The former, e.g., arranging a 3D 

corrugated boundary subsalt play to satisfy 1D layered earth assumptions, velocity analysis, and moveout patterns, or 

modeling and subtraction of multiples, where seeking to satisfy those type of assumptions is not really imaginable let 

alone plausible. That fact drove the search for new methods that avoided those impossible-to-satisfy criteria. These 

new methods would satisfy the following criteria: (1) be fully multi-D, (2) make no assumptions about subsurface 
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properties, (3) have no need for interpretive intervention, (4) and be able to accommodate the broadest set of 

multiples of all orders, (5) where the definitions and meaning of primaries and multiples themselves are extended 

from their early 1D earth definitions and concepts, extended to prime and composite events as introduced in Weglein 

and Dragoset (2005), and (6) be equally effective at all offsets, retaining effectiveness in prestack and poststack 

applications, and (7) last but not least, where multiples are surgically removed by predicting both their amplitudes 

and phases, and thus do not harm primaries, even if they are proximal and overlapping. The efficacy and choice 

among multiple removal methods in response to the challenges posed in a world of complex multiple generators, in 

1D earth settings, and/or in heterogeneous rapid laterally varying media and boundaries would ultimately be 

evaluated, judged and selected, by how well they satisfied all of these criteria. 

Before discussing, classifying, and comparing methods for removing multiples, it would be useful to introduce 

and briefly discuss three important background topics/subjects that will enhance and facilitate grasping the 

sometimes counterintuitive ideas we will be describing and attempting to convey. 

 

Modeling and inversion are two entirely different enterprises 

Modeling run backwards, or model matching or iterative linear inverse model matching, or any form of indirect 

inversion, or solving a direct forward problem in an inverse sense, are not equivalent to direct inversion. Nor is any 

intermediate seismic processing objective within a direct inversion algorithm equivalent to solving for that same goal 

in some model-matching or indirect manner. The only exception to that rule is when the direct inverse task is linear 

(e.g., when the goal is depth imaging and you know the velocity field, the direct inverse for depth migration is 

linear, and then modeling run backwards is direct depth imaging). If the direct inverse is nonlinear in either the entire 

data set or a single event, then modeling run backwards is not the equivalent of a direct inverse solution. See e.g., 

Weglein et al. (2009) for full detail and examples. And it is worth noting at this point that the inverse scattering 

series is the only direct inverse for a multidimensional acoustic, elastic, or inelastic heterogeneous earth. 

Prediction and subtraction: The plan to strengthen the prediction, 

and reduce the burden, dependence and mischief of the subtraction 

Multiple removal is often described as a two-step procedure: prediction and subtraction. The subtraction step is 

meant to try to compensate for any algorithmic compromises or real world conditions outside the physical 

framework behind the prediction. In multiple removal applications the subtraction step frequently takes the form of 

an energy minimizing criteria based adaptive subtraction. The idea being that a section of data (or some temporally 

local portion of data) without multiples has less energy than the data with multiples. One often hears that the 

problem with multiple attenuation is not the prediction but the subtraction. In fact, the real problem is excessive 

reliance on the adaptive to solve too many problems, with an energy minimizing criteria that can be invalid or fail 

with proximal or overlapping events. The breakdown of the energy minimization adaptive subtraction criteria itself 

can occur precisely when the underlying physics behind, e.g., high-end inverse scattering series multiple prediction 

(that it is intended to serve) will have its greatest strength and will undermine rather than enhance the prediction. 

Exact closed forms and perturbative mathematical relationship: 

closed forms with exact information and series solutions for 

approximate or no information 

There are two general mathematical approaches to solving problems: (1) Exact closed-form or single-term 

relationships, typically associated with situations where the detail causing the phenomena is well defined; and (2). 

perturbative approaches, identified with descriptions that allow for imprecise (or no) information about the condition 

causing the phenomena. The archetypal perturbative statement is the Taylor series  

                                       (1) 

where the function f at x is given in terms of f and its derivatives at y and the difference between x and y, (x−y). 
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The value of f, at state x, is given as a perturbation of f about another state, y. An example of an exact closed-

form relationship would be, e.g., f(x)=2+5x. 

Understanding the difference between exact and perturbative relationships is the cornerstone for gaining an 

appreciation for how the forward and inverse-scattering series approach the construction and removal of events that 

either owe their existence to well defined and accessible causes (e.g., the free surface) or to causes that uncertain and 

inaccessible (e.g., reflectors in the subsurface). 

For example, free-surface multiples owe their existence to the presence of the air-water free surface. Furthermore, 

since that physical boundary is as close to well defined and accessible as occurs in exploration geophysics, we will 

see how the generation and removal of each order of free-surface multiple is accomplished through the action of a 

single closed-form and exact term. In contrast, internal multiples (i.e., multiples that have their downward reflections 

below the air-water boundary) have experienced reflectors that are less well defined and, thus, a perturbative 

description is appropriate. In fact, an entire forward series is needed to construct one order of internal multiple, and 

one other entire inverse series is required to eliminate that order of multiple, without knowing or needing to know, or 

determining anything about the subsurface that the multiple has experienced and has generated the multiple.  

Scattering theory provides a surface reflection model for surfaces that are close to well defined (e.g.,air-water 

boundary) and a point scatterer model to model primaries and internal multiples where the details of the medium are 

uncertain. 

The inverse-scattering method assumes a priori information about the location and character of the airwater free 

surface. However, the method assumes no a priori information below the hydrophones. Internal multiples are 

described without any a priori information, using a distinct series in both their forward series construction and 

inverse series removal. 

Forward and inverse maps 

A forward problem generates data from a model concept; the forward model concept represents the way you 

visualize data being generated. How the processor conceptualizes and realizes data being generated determines (or 

locks the processor into) a concept of how they can be inverted to determine inverse or processing goals. The 

forward description determines how the experiences the event has realized are coded into its character; likewise the 

inverse decoding of events to determine inversion goals depends on the language and ingredients used to describe 

those experiences. How to code and decode depends on the processor‘s degree of confidence in defining the precise 

nature of the physical phenomena causing those experiences. 

The most straightforward and intuitive forward concept describes the formation of data in terms of the actual 

medium and actual reflections it has experienced between source and receiver. Although conceptually transparent 

and understandable, with each seismic recorded event being represented by a single term consisting of a product of 

all propagations, reflections, and transmission that the event had actually experienced. However, to invert, or to 

perform some inverse tasks within that conventional vision requires the ability to supply or determine the ingredients 

of the data construction, i.e., actual medium properties and structural information. 

Inverse tasks such as the removal of free-surface multiples are coupled to the corresponding concept of their 

construction. The free surface at the air-water boundary is the physical experience difference that causes the free-

surface multiples to exist; it is well defined and well located, hence it is suitable for creation and elimination of the 

actual air-water reflection that those free-surface multiples have experienced and all other events have not. 

We will demonstrate some of these ideas (using the 1D plane-wave normal incidence case) for the inverse 

scattering free-surface multiple elimination method. 

Figure 3 shows a situation in which a unit-amplitude downgoing wave leaves a source in the water column. The 

upper figure assumes that there is no free surface. R(ω) denotes the single temporal frequency of the upgoing 

recorded field. The lower figure corresponds to the same situation with the addition of the free surface. R
f
(ω) is the 

single temporal frequency of the upgoing portion of the recorded data. R(ω) contains all primaries and internal 

multiples. R
f
(ω), on the other hand, is the upgoing portion of the total measured wavefield and consists of primaries, 

internal multiples, and free-surface multiples. The downgoing source wavefield and the upgoing receiver wavefield 

would be realized in practice by source and receiver deghosting. The latter source and receiver deghosting is a 

critically important step to assure subsequent amplitude and phase fidelity of the ISS free-surface multiple removal 

methods, whose derivation follows below. 
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Forward construction of data with free-surface multiples, R
f
(ω), in 

terms of data without free-surface multiples, R(ω) 

The downgoing source wavefield of unit amplitude first impinges on the earth and R(ω) emerges (consisting of all 

primaries and internal multiples). R(ω) hits the free-surface and −R(ω) is the resulting downgoing wave (since the 

reflection coefficient is -1 for the pressure field at the free surface). This downgoing field, −R(ω), in turn enters the 

earth, and −R
2
(ω) emerges, and this repeats in the manner shown in Figure 4. 

The total upgoing wavefield in the presence of a free surface, R
f
(ω), is expressed in terms of the total upgoing 

wavefield in the absence of the free surface, R(ω),  

                          (2) 

                     (3) 

Several items are worth noting about this result. 

First, R(ω) includes primaries and internal multiples; −R
2
(ω) constructs all first-order free-surface multiples; 

R
3
(ω)  constructs all second-order free-surface multiples; and (−1)

n+1
R

n
(ω)  constructs all nth order free-surface 

multiples (nth order free-surface multiple means the multiple has n downward reflections at the free surface). 

Second, the fact that the free-surface is well located and defined by a known reflection coefficient (-1) allows one 

closed-form exact expression to create all of those events that correspond to each order of free-surface multiple. 

The inverse series for removing free-surface multiples corresponding to the forward series (above) that 

constructs free surface multiples one above is found by rearranging the second equation into R=R
f
/(1−R

f
) and then 

expressing R as the infinite series  

        
    

    (4) 

R
f
, as defined, equals the data with all free-surface multiples. R

2

f  predicts (-1) times all first-order free-surface 

multiples; R
3

f  predicts (-1) times all second-order free-surface multiples, and so forth. Again, one closed-form exact 

expression (one term) in the inverse series predicts and subtracts all events corresponding to a given order of free-

surface multiple. Thus, the above summation for R yields the data with all free-surface multiples eliminated. This 

expression is, indeed, the 1D normal-incidence version of the inverse-scattering free-surface multiple-attenuation 

algorithm Carvalho (1992); Weglein et al. (1997). Notice that neither the forward (construction) series for R
f
 in terms 

of R nor the removal (elimination) series for R in terms of R
f
 depend on knowing anything below the receivers. 

The ISS free-surface removal series derivation and algorithm does not care about the earth model type and is 

completely unchanged whether the earth is acoustic, elastic, or anelastic. That property is called ‗model type 

independent‘ Weglein et al. (2003). 

The derivation of these series was based on the difference in the physical circumstances that gives rise to the 

events we are trying to isolate and separate: Those events are free-surface multiples and the ( D
1

) reflection 

coefficient at the free surface is the physical circumstance. 

Both the construction and elimination process assume a wavelet deconvolution in the forward problem. The 

wavelet, S(ω), plays a role in the forward problem:  

                   (5) 

and in the inverse  

                            
       

       (6) 

Hence, for free-surface multiple removal there is a critical need for the wavelet since the effectiveness of the series 

has a nonlinear dependence on 1/S(ω). 
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As mentioned earlier, the single term, closed-form, exact expressions for creating and removing all free surface 

multiples of a given order reflect their exact, well defined, and well localized source: the free surface. 

For those readers interested in the generalization of these simple 1D formulas to the multidimensional earth, we 

suggest that the simple reflection coefficient (-1) be thought of (in scattering theory) as part of the extra term in the 

reference Green‘s functions due to the presence of the free surface called G
FS

0 . 

Free-surface demultiple algorithm: instructive analytic examples 

We present an analytic example to illustrate the inner workings of the ISS free surface multiple removal algorithm. 

The reflection data in the time domain:  

                   
           

            
  

              
               (7) 

In frequency domain:  

           
       

         
          

  
            

              (8) 

    
       

          
  

            
              (9) 

So R
f
(ω)+R

2

f (ω) precisely eliminates all free surface multiples that have experienced one downward reflection at the 

free surface. The absence of low frequency (and in fact all other frequency) plays absolutely no role in this 

prediction. This is a nonlinear direct inverse that removes free surface multiples. There is no imaginable way that 

one frequency of data could be used to model and subtract one frequency of free-surface multiple. A single 

frequency of data cannot even locate the water bottom. This is an example of how a direct nonlinear inverse does not 

correspond to a forward problem run backwards. Model matching and subtracting multiples is inconceivable without 

knowing or caring about the earth model type for the modeling step. Model matching, iteratively or otherwise, 

modeling run backwards, and all forms of indirect inversion are not equivalent to a direct inverse solution. 

Recovering an invisible primary 

Consider a free surface example with the following data:  

                   
           

         . (10) 

Now assume  

     
    

 . (11) 

       . (12) 

for some special case, then from equation Error! Reference source not found.,  

                 (13) 

The second primary and the free-surface multiple cancel, and  

          
     (14) 

   
       

        (15) 

         
        

       
        (16) 

                  
                      

          (17) 

resulting in the two primaries by recovering the primary not ‘seen‘ in the original data. 

The ISS free-surface multiple removal algorithm with deghosted data can predict and subtract the hidden 

multiple and recover the hidden primary. If these obliquity factor deghosting ingredients are compromised in the 

prediction the amplitude will be misplaced and incorrect the prediction and there will be an incorrect primary in the 

invisible reflector example. When the multiple is removed in the invisible reflector example, the energy goes up not 



6 

down, and the adaptive subtraction minimize energy criteria fails and it cannot ‘fix‘ the problem. The lesson: Don‘t 

compromise on prediction strengths and assume the subtraction (adaptive) will atone for any shortcomings. The ISS 

FS multiple prediction has no trouble recovering the hidden reflector. 

Jingfeng Zhang (2007)(pp. 37-63) demonstrates with prestack data that with deghosted data the ISS free-surface 

algorithm precisely predicts the FS multiple without the need for adaptive subtraction. For these same examples and 

in general the feedback loop free-surface multiple-attenuation algorithm, with its lack of an obliquity factor and 

retaining the source side ghost, will not accurately predict the amplitude and phase of free-surface multiples. 

Internal multiples and scattering theory 

Forward scattering theory provides a data construction, and inverse-scattering provides a data inversion based on a 

reference medium, rather than the actual; and point scatterers at points where reference differs from actual. The most 

convenient reference medium chosen for the purposes of multiple attenuation is water because no a priori 

information is required. Internal multiples are now visualized as being constructed by an infinite series, rather than as 

a single term (i.e., a generalized Taylor series about water speed, instead of a single-term description of actual 

experiences). The benefit is that there is an analogous inverse series for the removal of those internal multiples that 

requires only primaries and internal multiples, and water speed as input!  

But what is the use of this idea if it requires an infinite set of terms to construct a single internal multiple and an 

infinite set of terms to eliminate it?  The answer is: While it is true that it requires, in principle, an infinite set of 

terms to completely eliminate an internal multiple (when starting with water as the reference), the remarkable fact is 

that the first term in the removal series predicts the exact traveltimes of all internal multiples (including converted-

wave internal multiples) and gets 85-95% of the amplitude predicted for entire P-wave internal multiples. The 

removal process for internal multiples (i.e., the predictive apparatus in the direct inversion series) is much more 

efficient than the corresponding first contribution to the forward series that models and constructs internal multiples. 

That latter first term in the forward series gets the time for all internal multiples wrong and in general is a poor 

approximation to the amplitude. There are certain classes of internal multiples for which closed form for entire series 

realizing the elimination of those internal multiples have been developed (Ramírez and Weglein, 2005) and we 

anticipate further progress on that front.  

If the prediction of internal multiples that resides in the inverse-scattering series was as efficient as the 

construction of internal multiples in the forward series (where it takes an infinite number of terms to get the time 

right), then the inverse-scattering series for predicting and subtracting internal multiples would be of no practical 

value.This is not the case. 

The reason behind this difference between the efficiency of the prediction in the forward and inverse series is 

that the inverse has data, with events in time, as input; the forward series does not. Processes that involve data 

prediction are favored by the inverse series; processes that involve depth (or spatial) issues are the domain of 

comfort of the forward series. 

Forward and inverse-scattering series as generalized Taylor series 

The forward-scattering series is a generalized Taylor series for the data generated from the actual medium, D=D(m), 

in terms of the data from the reference medium, D
0
=D(m

0
), and the difference between the actual and reference 

media, m−m
0
. Similarly, the inverse-scattering series can be viewed as the generalized Taylor series that produces 

the actual medium, m=m(D) in terms of the reference medium, m
0
=m(D

0
), and the difference between actual and 

reference data, D−D
0

. 

The forward-scattering series is  

                                      
   (18) 

and the inverse series is  

                                      
   (19) 
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. It turns out that D'(m
0
), D''(m

0
)⋅ and m'(D

0
),m''(D

0
)⋅  are all expressible in terms of very simple analytic forms that 

only involve the wavefield in the reference medium, D(m
0
). With water as the reference medium, the forward series 

derives the actual data in terms of propagation in water and the difference between earth and water, m−m
0
. The 

inverse series provides the actual medium, m, in terms of propagation in water and the difference between recorded 

and reference wavefields, D(m)−D(m
0
). 

Therefore, the subseries that attenuate free-surface and internal multiples (and that reside within the inverse-

scattering series) only input data and the propagation properties of water. This demonstrates the link (propagation in 

the reference medium) between the forward and inverse scattering series. The choice of reference depends on several 

factors: the task within the inversion process that is the objective; the need for a priori information to achieve that 

objective; and the availability of reliable information. 

The simpler the reference, the simpler the inverse calculations. The simplest reference medium is water and for 

the tasks of multiple attenuation there is little or no benefit to choosing anything closer to the actual earth. 

In the forward-scattering problem, m−m
0
 is given, and the spatial location of reflectors corresponds to where 

m−m
0
 is rapidly varying. Therefore, for the forward-scattering series the location of reflectors is straightforward. The 

time of events is difficult to predict in the forward series since the wave is propagating with the reference speed, not 

actual speed, between reflection points. In contrast, the inverse series starts with the data, D, in time. Hence, it favors 

tasks (e.g., the prediction of free-surface and internal multiples) that stay in that domain. This is the essence of the 

difference between prediction in the forward scattering (modeling) and the inverse-scattering (processing) problem. 

In sum, forward modeling of seismic data from the forward series generates data from a model, starting with no 

data (or reference data from a reference model). Either case results in a larger class of events after the modeling 

operations are completed. 

The forward series for modeling seismic data, including primaries and multiples, requires knowledge of every 

detail of the medium, and is model type specific. The inverse series allows removal of free surface and internal 

multiples without any interest in subsurface information, and without any interest in what type of model you might 

consider appropriate for modeling the data from the earth. 

In contradistinction, in direct inversion the data-prediction operations start with a combination of event types and 

then predict and subtract one class of those events from the rest. Hence, the prediction mechanisms within the direct 

inversion are going in the opposite direction from the prediction mechanisms of modeling. Direct inversion inputs a 

larger, more extensive set of data and proceeds to separate primaries and multiples of different types and orders. In 

direct inversion, the data already contain the events to be predicted (and substracted). Data prediction with modeling 

requires creation of the events to be predicted. In direct inversion, the objective is to separate out a subset of the 

entire data set that has a certain specific characteristic from those that don‘t, starting with data that contain all events 

with and without that characteristic. For example, one characteristic could be a free-surface reflection, another could 

be no free-surface reflection but one downward reflection anywhere below the free surface. This is the fundamental 

difference between the data-prediction mechanisms in modeling and direct inversion. 

There are different ways in which internal multiples are cataloged and classified, and these characterizations 

affect the way that inversion methods separate them from primaries. If the construction of primaries and multiples is 

characterized in terms of their actual propagations and reflections (the interface model used in the feedback method), 

then actual propagation and reflection properties are required in the removal of those multiples. 

However, if primaries are characterized, described, and distinguished from multiples in a forward construction in 

terms of a reference medium, then the inverse of that construction provides a systematic procedure to separate 

internal multiples from data (with primaries and internal multiples), using only the data and the reference medium 

(water). This is the idea behind the inverse scattering series for attenuating internal multiples, and it is in that 

understanding and logic that the mystery of how the inverse scattering series for attenuating free-surface and internal 

multiples is demystified. That is also the origin of the difference between the inverse-scattering and feedback-loop 

methods for internal multiples. These internal multiple procedures appear to have opposite attitudes toward a priori 

information and complementary regions of technical and cost effectiveness. 
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ISS internal multiple attenuation algorithm 

The ISS internal-multiple attenuation algorithm (Araújo et al., 1994; Weglein et al., 1997) is a data-driven tool. It 

does not require any information about the reflectors that generate the internal multiples or the medium through 

which the multiples propagate, and it does not require move-out differences or interpretive intervention. The 

algorithm predicts internal multiples for all horizons at once. This ISS internal multiple attenuation algorithm is the 

first term in a subseries of the ISS that predicts the exact time and amplitude of all internal multiples without 

subsurface information. The ISS attenuation algorithm predicts the correct traveltimes and approximate amplitudes 

of all the internal multiples in the data, including converted-wave internal multiples (Coates and Weglein, 1996). 

Carvalho (1992) pioneered the free-surface ISS method and applied it to field data; Matson et al. (1999) were the 

first to apply the ISS internal multiple algorithm to marine towed streamer field data; and Ramírez and Weglein 

(2005) extended the theory from attenuation towards elimination by including more terms in the elimination 

subseries, thereby improving the amplitude prediction. The original ISS free-surface and internal multiple algorithms 

were designed for a marine towed streamer data experiment. Matson (1997) and Weglein extended the ISS methods 

for removing free surface and internal multiples to ocean bottom and land data. 

The ISS internal-multiple attenuation algorithm in 2D starts with the input data, D(k
g
,k

s
,ω), that is deghosted and 

free-surface multiples eliminated. The parameters, k
g
, k

s
 and ω , represent the Fourier conjugates to receiver, source, 

and time, respectively. The ISS internal-multiple attenuation algorithm for first order internal multiple prediction in a 

2D earth is (Araújo, 1994; Weglein et al., 1997)  
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 ∞

                 
          

∞

 ∞

     

∞

 ∞

                             
           

    

 ∞

                  
          

∞

    

 

   (20) 

The quantity corresponds to an uncollapsed migration (Weglein et al., 1997) of an effective incident plane-wave data, 

which is given by . The vertical wavenumbers for receiver and source, q
g
 and q

s
, are given by q

i
=sgn(ω)  

ω
2

c
2

0

−k
2

i  

for i=(g,s); c
0
 is the constant reference velocity; z

s
 and z

g
 are source and receiver depths; and z

i
 (i=1,...,3) represents 

pseudodepth. Note that the obliquity factor, 2iq
s
, is used to transform an incident wave into a plane wave in the 

Fourier domain (Weglein et al., 2003). 

The first-order internal multiple is composed of three events that satisfy z
1
>z

2
 and z

3
>z

2
. The traveltime of the 

internal multiple is the sum of the traveltimes of the two deeper events minus the traveltime of the shallower one. 

The parameter ε introduced in equation Error! Reference source not found. preclude z
1
=z

2
 and z

2
=z

3
 in the 

integrals. For band-limited data, ε is related to the width of the wavelet. The output of equation Error! Reference 

source not found., , are divided by obliquity factors and transformed back to space-time domain. When we subtract 

the estimated internal multiples from the original input data, all first order internal multiples are suppressed and 

higher order internal multiples are altered. 

Properties of the first order term in the ISS internal-multiple 

attenuation algorithm -- uncollapsed f-k migration 

Stolt uncollapsed migration resolves many complicated wave phenomena within a constant velocity overburden such 

as diffractions and multipathing. One example of such phenomena is the bow-tie pattern generated by reflections 

over a sufficiently curved boundary. These effects are common in seismic exploration data and can occur in a variety 

of geologic features, including salt domes, faults, layer terminations, pinch-outs, fractured and/or irregular volcanic 
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layers and for a rough sea-bottom. As we mentioned, several internal multiple removal algorithms require picking of 

events and traveltimes. In some of those methods (Keydar et al., 1997) the picked traveltimes are directly used to 

mute the wavefield at earlier or later times with respect to the generator, and internal multiples are predicted using 

auto- and crosscorrelation operations between traces from the resulting fields. In others, e.g. the feedback methods, 

the traveltimes are used to determine approximated redatuming operators. However, all these approaches are based 

on the implicit assumption that a one-to-one relationship exists between seismic events (their traveltime) and the 

earth features that create them (such as layer boundaries). In the presence of diffractions and/or multipathing, a one-

to-one relationship does not exist, as, e.g., a single curved interface can produce several seismic arrivals. Picking 

events, traveltimes, and generators is generally not recommendable even in a normal incidence experiment in a 1D 

earth, since destructively interfering primary and multiple events are possible and even prevalent in land field data 

tests (see, e.g., Kelamis et al., 2006; Fu et al., 2010). The ISS method, with its automatic amplitude and phase 

prediction, and no picking of events nor generators, has no problem and surgically removes multiples that are 

isolated or interfering with other events. 

Example1: Internal multiples from curved or rugose surfaces 

We present an example based on a simple three-layer earth model where the shallowest interface is sine shaped. The 

model in Figure 7a produces the data in Figure 7b where all seismic events except the second primary at 2.2 s can be 

traced back to their origin at the shallow reflector. Clearly, in this example it is an issue to pick a unique traveltime 

to represent the curved reflector, as many events are generated which interfere among themselves and even with the 

second primary. The ISS method provides a natural solution by using as input the uncollapsed prestack FK water-

speed migration (Figure 7c). The sketch in Figure 8 describes the case of an internal multiple which would not be 

predicted if total traveltimes were the basis of the method. The multiple can be shown to trace back to an earth 

feature where the relationship between total traveltimes and vertical traveltimes (pseudodepth) is inverted due to the 

presence of a high-velocity layer at depth. 

Properties of the leading (third) order term 

Let z
1
, z

2
 and z

3
 be the pseudodepths of three generic points in the first-order term of the internal multiples series 

(uncollapsed constant-velocity prestack migration). As those points span the entire data volume, the leading order 

attenuation algorithm (which is third order in the imaged data) allows any combination such that z
1
>z

2
 and z

3
>z

2
 to 

contribute the prediction (lower-higher-lower constraint). In contrast with the methods based on the convolution and 

correlation of wavefields, where the definition of the generator is static, the ISS algorithm‘s lower-higher-lower 

constraint does not refer to any particular interface or event in the data. On the contrary, it applies to all of their 

water-speed images allowing the simultaneous prediction of all first-order internal multiples from any depth  without 

interpretation and traveltime picking of the data or knowledge of the medium. 

Example2: A complete one-step prediction 

We demonstrate the properties of the ISS internal-multiple prediction algorithm and its difference with the phantom 

layer approach (Berkhout and Verschuur, 2005; Kelamis et al., 2002) using a set of acoustic 3D finite-difference data. 

The model shown in Figure 9a is composed of four layers delimited by three interfaces, the first of which has a gap 

approximately 1.5-km long and 100-m deep. In Figure 9b the travel paths of several internal multiples are drawn 

schematically using up- and downgoing arrows representing wave propagation. In a zero offset section of the data 

(Figure 10a) a first train of closely spaced internal multiples characterized by the pattern 2[12]
n
 can be shown to 

originate from the energy reflected between the two shallow reflectors 1 and 2. A deeper reflector 3 causes the entire 

train to begin again at around 1.4 s (3[12]
n
 trend) and once more at 2.1 s (313[12]

n
 and 323[12]

n
 trends). In general, 

even in a simple three-interface earth model the number of reverberations recorded at the surface is extremely large 

as a result of the various ways three reflectors can be combined to form internal multiples. The ISS internal-multiple 

algorithm predicts all of them at once, without any interpretation required on the data, as shown in Figure 10b and 

10c. It is useful to observe that the feedback phantom layer approach and algorithms cannot achieve the same result 

for any choice of ‗layer‘, even when two or more primaries such as events 1 and 2 form a layer of downward 

reflecting generators. Figure 11a shows the four types of first-order internal multiples generated within a three-
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reflector earth. If the downward-reflecting layer is chosen to close between the first and second reflectors, the layer-

related method can predict the three types of first-order internal multiples shown in Figure 11b. 

The key point 

Notice that for any choice of downward-reflecting layer, there is at least one type of first-order internal multiple 

which cannot be predicted with the phantom layer approach. Although these missed multiples might seem like some 

academic nitpick of little consequence, in fact this observation is of tremendous practical significance, and the root 

cause behind the Fu et al. (2010) conclusion on ISS internal multiple effectiveness and stand-alone added value on 

complex land near surface internal multiple generators. 

The above analysis and examples help to recognize the ISS internal multiple capability for addressing the 

daunting challenges of land data. We describe a wish-list of qualities that the ideal response to  multiple removal 

challenges would satisfy, and show how only the ISS internal multiple method reaches that high standard. All 

methods have strengths and shortcomings, and as we recognize the shortcomings of the current ISS attenuator, we 

know that removing them resides within the ISS and that upgrade will never require subsurface information, picking 

events or any interpretive intervention, or stripping as well. What all the ISS methods require is a reasonable source 

signature, and we are developing onshore Green‘s theorem methods for that purpose (see Zhang and Weglein, 2005; 

Zhang and Weglein, 2006; and Mayhan et al., 2011). Adaptive energy minimizing criteria are often employed in an 

attempt to bridge the conditions and limitations of the real world and the physics behind what our algorithms are 

assuming. When first introduced by Verschuur et al. (1992) and Carvalho and Weglein (1994) the need was clear 

and good benefit was derived, especially with isolated primaries and free surface multiples of first order. But as with 

all assumptions, today‘s reasonable and necessary assumption will invariably be tomorrow‘s impediment to progress 

and increased effectiveness. And that‘s the case with adaptive subtraction today. Especially with land internal 

multiples, we advocate a three pronged response: (1) seek further capability for amplitude fidelity for all orders of 

internal multiples, including converted wave internal multiples, (2) satisfy prerequisites for the source signature and 

radiation pattern, and (3) look for a new ‗bridge‘ to replace the energy minimization adaptive criteria, a bridge that is 

consistent with the underlying physics rather than runs at cross purposes with the greatest strength of the ISS 

prediction. Our plan is to progress each of these three issues as a strategy to extend the current encouraging results 

and allow ISS multiple removal to reach its potential: to surgically remove all multiples without damaging primaries 

under simple, complex, and daunting land and marine circumstances. 

Examples of 2D ISS free-surface and internal multiple removal with 

marine data 

Figure 5 shows an example of the internal-multiple attenuation series algorithm applied to a 2D synthetic. The data 

set was computed using an earth model characterized by rapid lateral variations shown in Figure 5a. On Figure 5b, 

from left to right, the three panels show the input data, the predicted internal multiples, and the result of inverse 

scattering internal multiple attenuation, respectively. 

Figures 6a and 6b illustrate the free-surface and internal multiple attenuation algorithms applied to a data set 

from the Gulf of Mexico over a complex salt body. Seismic imaging beneath salt is a challenging problem due to the 

complexity of the resultant wavefield. In Figure 6a, the left panel is a stacked section of the input data and the right 

panel shows the result of the inverse scattering free-surface multiple removal algorithm. Figure 6b illustrates the 

internal-multiple attenuation method applied to the same Gulf of Mexico data set. An internal multiple that has 

reverberated between the top of the salt body and the water bottom is well attenuated through this method. 

ISS internal multiple application for land 

Fu et al. (2010); Weglein et al. (2011); Luo et al. (2011) describe the motivation, evaluation, and comparison of 

different approaches to removing internal multiples on complex synthetic and onshore tests. Fu et al. (2010) 

concluded that ―Their (ISS internal multiple algorithm) performance was demonstrated with complex synthetic and 

challenging land field data sets with encouraging results, where other internal multiple suppression methods were 

unable to demonstrate similar effectiveness‖. 
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These wavefield event separation methods can be reviewed as borrowing, extending, and merging the earlier 

separation idea of ‘filters‘ and wave theory modeling to become the modeling of separation, in wave theory event 

separation techniques, and finally the separation of events without modeling the separation mechanism. In the Delft 

approach, the modeling of the event separation requires exact knowledge of the detail of the physical properties 

defining the difference in experience. 

For internal multiples the antecedent of the Delft approach resides in the layer-by-layer stripping methods 

pioneered by Goupillaud (1961); Kennett (1983). The practical difficulties and failure of realizing the latter ideas and 

methods on field data and on band-limited noisy synthetic data caused understandable aversion to any use of 

amplitude for parameter identification. However, as every new generation of geophysicists arrives on the scene the 

idea is revisited, recently encouraged by the collection of longer offset and lower-frequency data. 

The purpose of the following sections is to detail what resides behind the properties of the ISS internal multiple 

algorithm, and the reports by Fu et al. (2010) and Luo et al. (2011) on the stand alone added value represented by 

those techniques. 

 

Conclusions 

We introduce a classification of methods to attenuate multiples starting with filters and on to wavefield modeling and 

separation techniques. Filters seek to separate primaries from multiples and rely on either periodicity assumptions of 

multiples or different assumed transform domain separation properties to find a characteristic to separate and mute 

primaries from multiples. These methods make assumptions which typically include a 1D earth, and require knowing 

the velocity of primaries, and/or assume that there are move-out differences between primaries and multiples. The 

second category, wavefield modeling and subtraction (Morley and Claerbout, 1983; Wiggins,,1988) seeks to model 

the entire history of a multiple or a set of multiples, and then adaptively subtract the modeled multiple from the 

recorded reflection data. In principle, every physical property within the earth that the multiple has experienced must 

be accurately known to model and subtract it. The third class of methods, wavefield data separation, while wave- 

based returns in some sense to the filter idea of seeking to separate primaries from multiples. Rather than using 

periodicity or transform domain distinctions, however, wavefield data separation uses a defined and distinguishing 

difference in the actual history and experiences of the events as a means of separating them into categories. There are 

two different methodologies within this third class of data separation: (1) the feedback loop methods pioneered by 

the Delphi group at Delft University (Berkhout, 1982; Berkhout and Verschuur, 1997), and (2) the inverse scattering 

series methods centered at the Mission-Oriented Seismic Research Consortium, within the Physics Department of the 

University of Houston. 

The filter method (based on modeling a specific physical location that separates events), and modeling and 

subtraction of multiples (based on modeling entire history) has given way to once again separate not in transform 

domains and using filters with very restrictive assumptions, but with either (1) a physical experience difference 

known and available for both free-surface and internal multiples (the feedback method), or (2) the vastly different 

inverse scattering series (ISS) methods for removing free-surface and internal multiples. ISS methods have the 

unique and stand-alone message, promise and ability to achieve all processing goals directly in terms of data, and 

without knowledge of subsurface properties. Processing goals of interest are: (1) removal of free-surface and internal 

multiples, (2) depth imaging, (3) nonlinear AVO, and (4) Q compensation. The ISS communicates that all processing 

tasks are directly achievable without subsurface information. Because ISS methods can accommodate a priori  

subsurface information or a total lack thereof ( see, e.g., Weglein (1982)). this unique capability is called upon for 

different processing goals. Therefore, returning to multiples, the ISS provides for subseries that perform the removal 

of free surface and internal multiples directly in terms of data. When the separation and distinction can either be in 

terms of a known physical experience as for the free surface reflection and free surface multiple case respectively - 

while for ISS methods the internal multiple separation is not in terms of an actual known difference in physical well 

located and identifiable experience but rather in a more subtle and geometric and collaborative manner, that doesn‘t 

require knowing or determining any subsurface property whatsoever. There is no need to know either the entire 

history of the multiple nor is there any need to know, estimate or identify a part of the subsurface e.g., a reflector 

where those internal multiples that have experienced a shallowest downward reflection are separated from primaries 

and deeper downward reflecting internal multiples, the ISS multiple removal methods accommodates either well 
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known physical differences (free surface multiples) or unknown experience differences (internal multiples) or the 

entire internal multiples/and primary event separation takes place in terms of the complete measured wavefield and 

only water speed (in the marine case). 

Entire history modeling and subtracting multiples gives way to recognizing that all we want to achieve is a 

separation of events into categories, and separation depends on identifying what separates them, sometimes 

explicitly and in closed form, and other times in terms of a separation of reference properties and data only. More 

collaborative cooperative engagement of the entire recorded wavefield is required when a separation without 

knowing or being able to achieve physical experience property detail is wanted. The ISS promises that separation 

can be exactly achieved without the identified separation defining physical property, as effectively as having that 

information would allow. 

Summary 

The strategy that we advocate is driven by the industry. It‘s objectives are: (1) fidelity of both amplitude and phase 

prediction to allow surgical multiple removal of all multiples without damaging primaries; (2) including all relevant 

multiples in the algorithms; (3) using appropriate orders of multiple removal terms from ISS multiple removal 

subseries) in the prediction; (4) strengthen the prediction and reduce the burden on the adaptive subtraction, and (5) 

develop a replacement to the energy minimization criteria that will align with rather than impede the method its 

meant to serve. The ISS methods for removing free surface and internal multiples is an essential and uniquely 

qualified ingredient/component in this strategy. When other priorities (like cost) might reasonably override 

amplitude and phase fidelity, and inclusiveness of relevant internal multiples is not essential, then the feedback 

method can be the right choice, provided the cost of drilling dry holes has been taken into account. 

 

In summary, multiple removal prediction methods have progressed and there is much to celebrate. However, the 

trend to more complex and challenging marine and onshore plays demands inclusiveness of all troublesome 

multiples in the removal, along with: (1) stronger and more competent prediction, with amplitude and phase fidelity 

at all offsets, and (2) the development of fundamentally new concepts and criteria for subtraction, that align with 

rather than undermine the strengths of high-end prediction. There will always be a need for a subtraction step, 

attempting to deal with issues beyond the framework of the prediction, and there will always be those types of 

‗beyond the framework‘ issues. We need a more sophisticated and capable subtraction criteria. The adaptive 

subtraction concept, has been enormously useful; with a strong record of contribution but now is too blunt an 

instrument for the more complicated and complex pressing challenges. In the interim, the strategy is to build the 

strength of the prediction and to reduce the burden on the adaptive subtraction. In this paper we want to 

communicate our support and encouragement for that future progress and delivery. 
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Figure 1: Marine primaries and multiples: 1, 2 and 3 are examples of primaries, free surface

multiples and internal multiples, respectively.

Figure 2: The marine configuration and reference Green Function.



Figure 3: Data without a free surface (top) and with a free surface (bottom).

Figure 4: The forward problem. Constructing free surface multiples [i.e., from R(ω) to Rf (ω)].



(a)

(b)

Figure 5: A 2D synthetic model characterized by gently curved reflectors intersected by a fault (top).

The left panel (bottom) shows a common offset display from the synthetic data set created using

the model. The middle panel (bottom) shows the predicted internal multiples and the right-hand

panel (bottom) is the result after subtracting the predicted multiples from the input data set.



(a)

(b)

Figure 6: (a)The left panel is a stack of a field data set from the Gulf of Mexico. The right panel

is the result of ISS free surface multiple removal. (b)The ISS internal multiple attenuation method

applied to the same data set after free surface multiple removal. Data are courtesy of WesternGeco.
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Figure 7: (a) Velocity model used in Example1. (b): zero offset section of the input data; (c):

zero offset section of the water-speed f − k migration, first order term in the ISS internal multiple

algorithm.
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Figure 8: An internal multiple (solid blue) satisfying monotonicity in vertical time but not in

total traveltime. If wave-speed c1 is much greater than c0, the (dashed blue) and (dashed green)

primaries arrive at the surface earlier than the (dashed red) primary. The multiple is removed by

the ISS method, but not by methods based on total traveltime monotonicity.
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Figure 9: Earth model (a) and event labeling (b) used in example2. Densities are chosen to yield

a vertical-incidence reflection coefficient of 0.8 at all layer boundaries.



(a) (b) (c)

Figure 10: Zero offset sections from example2: (a) input data, (b) predicted multiples and (c)

labeling of events.

(a) (b) (c)

Figure 11: (a) Four types of first-order internal multiples are generated by three reflectors. (b)

and (c) The first-order internal multiples predicted by the feedback layer method using different

definitions of the downward generator layer (red dashed lines).


